Supplement (on line)

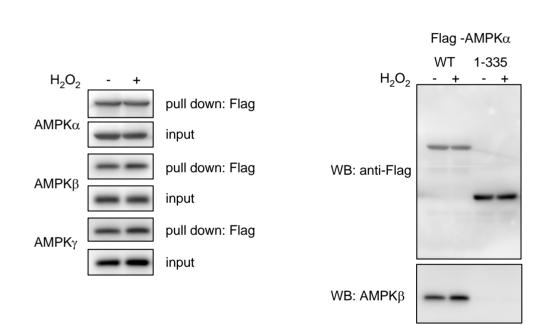

Figure legends

Fig. s1. The *effects of* H_2O_2 *on* $AMPK\alpha\beta\gamma$ *complex composition. A and B.* Flag tagged AMPK α (A) or AMPK α (WT or the AMPK α 1-335 truncation mutant) (B) were transiently expressed in HEK 293 cells and then the cells cultured with H_2O_2 (0 or 250 μ M) for 15 minutes. The amounts of β and γ subunits interacting with Flag-AMPK α were determined after pull down with anti-Flag agarose followed by Western blot analysis with antibodies specific for the AMPK subunits. A second experiment provided similar results.

Fig. s2. Direct exposure to H_2O_2 stimulates AMPK kinase activity. A and B. Recombinant AMPK $\alpha\beta\gamma$ complex (25 ng/sample) was pre-incubated with H_2O_2 (0, 100, 200 μ M) for 10 minutes followed by determination of phosphorylation of the SAMS peptide at the indicated times. Representative autoradiogram (A) and quantitative analysis (B) of optical dot density is shown. Mean \pm SD, n = 3, *P < 0.05, **P < 0.01, ***P < 0.001 compared to untreated. C. AMPK $\alpha\beta\gamma$ (100 ng/30 μ l sample) was incubated with H_2O_2 (0, 100 or 200 μ M) for 10 minutes at room temperature and auto-phosphorylation initiated by inclusion of [32P]-ATP. Samples were incubated for 30 minutes at room temperature followed by SDS-PAGE and auto-radiography. A representative autoradiogram shows the levels of phosphorylated AMPK α and β subunits. A second experiment provided similar increase in auto-phosphorylation of AMPK in a H_2O_2 dependent manner.

Fig. s3. Metal dependent production of highly reactive hydroxyl radical inactivates catalytic function of AMPK. A and B. Recombinant AMPK $\alpha\beta\gamma$ was incubated with H₂O₂ in the presence or absence of (A) copper (100 or 200 μ M) or (B) iron (200 μ M) for 10 minutes at room temperature and then AMPK activity determined after 30 minutes incubation with [32P]-ATP and SAMS peptide. The mean AMPK activity is shown in (A) (Mean ± SD, n = 3, *P < 0.05). Representative autoradiograms are shown and a second experiment confirmed the inhibitory effects of iron and H₂O₂ on AMPK activity.

Fig. s4. AMPK oxidation and activation are present in the lungs of acatalasemic mice. A and B. Representative Western blots (A) and quantitative data (B) shows levels of AMPK α , phospho-Thr172AMPK α , and AMPK β subunit in lung homogenates obtained form control or acatalasemic mice. (Mean \pm SD n = 4 mice per group. C. Lung homogenates were incubated with BIAM (100 μ M) for 20 minutes at room temperature and the amounts of BIAM-AMPK α , phospho-T172AMPK α , and AMPK β adduct formation determined using streptavidin-agarose pull down and Western blot analysis with specific antibodies to AMPK subunits.

В

Pull down: Flag-AMPKα

Α

Figure s1

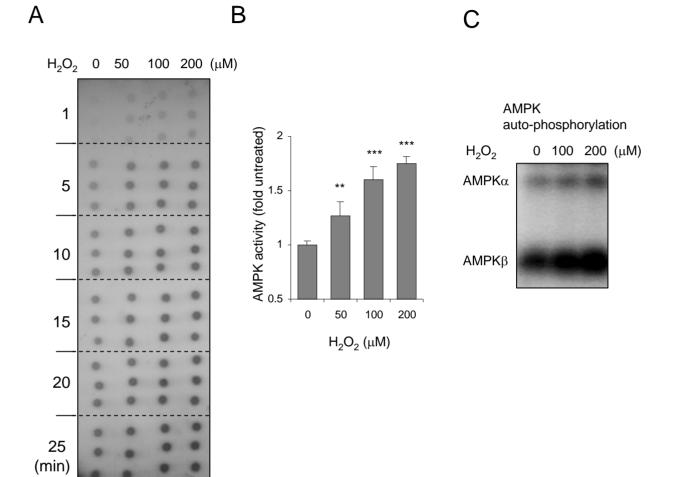
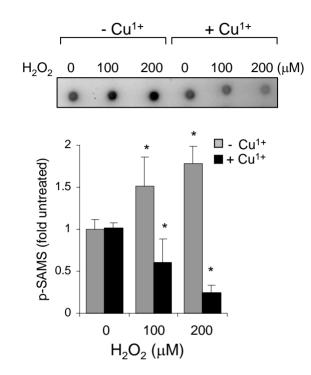
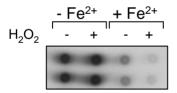




Figure s2

В

Α

Figure s3

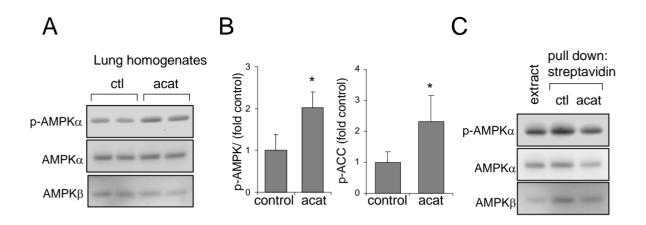


Figure S4