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Supplementary Data 

 

Figure 1 A simplified example that depicts the MBA workflow. Starting from a 

generic toy model and toy CH and the CM sets, a random scanning order aiming to 

delete non-core reactions is chosen. The resulting model in each such individual 

scanning procedure is affected, to some extent, by the scanning order and by the 

optimization criterion. Models I and III are constructed with ε<1, (i.e., it favors to 

preserve CM reactions than removing non-core reactions) and therefore consist of 

reactions 10, 11, and 12, as opposed to models II and IV that are constructed with 

ε>1. The removal of reactions 5, 8, and 9 and the inclusion of reaction 4 are not 

affected either by the scanning order or by the optimization criterion. On the other 

hand, the inclusion of reactions 1, 2, and 3 depends on the scanning order, such that 

for 1/3 of the random scanning orders (i.e., scanning orders in which reaction 3 

precedes both reaction 1 and reaction 2) the resulting model would consist of 

reactions 1 and 2, and for 2/3 of the random scanning orders (i.e., scanning orders in 

which either reaction 1 or 2 precede reaction 3) the resulting model would consist of 

reaction 3 instead of reactions 1 and 2.  The final model used is hence produced using 

the aggregative approach described in the main text, which sums over the random 

selections to express the most likely reactions’ set. 
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Figure 2 The compartmentalization of the metabolites comprising the input sets, that 

is, (A) the core and (B) the generic model, and the output sets, that is, (C) the non-

core liver metabolites and (D) the liver model.  

 

 

 

Figure 3 The gluconeogenesis rate obtained in the (A) liver model and the (B) generic 

model with an increasing uptake rate of glucogenic amino acids, lactate or glycerol. 
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Figure 4 Prediction of experimental hepatic flux data. The ROC curves (and the 

resulting mean AUCs) of all classifiers are presented separately for predicting (i) 
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increasing and (ii) decreasing fluxes, for (A) all measured fluxes (using cross 

validation); (B) exchange fluxes (setting the internal fluxes to their measured values); 

(C) inner fluxes (setting the exchange fluxes to their measured values). 

 

 

Figure 5 Prediction of metabolic biomarkers. The figure depicts the ROC curves (and 

the resulting AUCs) of all 5 classifiers, including the strict model. 

 

 

 

Figure 6 Interval comparisons: the flux interval of a reaction vi, colored red, is 

compared to its reference interval, colored blue. v1 (v2) is elevated (reduced), since 

both the min and the max values are greater (lower) in comparison to the reference 

interval, and therefore change(v1)>0 (change(v1)<0). Both v3 and v4 are considered 

unchanged. Although the maximal value of v4 increased, its minimal value decreased 
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just as much, such that they are canceled out (change(v1)=0), and v4  is considered 

unchanged.   

Model Liver Generic 

Disorder OTC   ASL   ASS  OTC   ASL  ASS  

KO 2.56±6.2 1.89±4.26 1.06±2.85 0.05±93.61 4.26±22.68 2.83±21.4 

Heterozygote 1.57±0.56 2.02±1.57 1.15±0.45 7.45±28.73 5.18±3.18 5.25±10.58 

Normal 

homozygote 

1.8±0.56 2.3±1.57 2.04±0.45 3.57±28.73 2.79±3.18 4.3±10.58 

 

Table I The mean values ± the standard deviations of the urea secretion/glutamine 

uptake ratio of the healthy/pathologies metabolic profiles as defined by the generic 

and liver models.  

 

Sensitivity Analysis 

The parameter that weighs the optimization criterion, denoted as ε in the MBA 

formulation (see Methods) was set to 0.5 in the construction of the liver model (i.e., 

|eM| ≤0.5* |eX|). We performed a sensitivity analysis to examine the reliance of the 

resulting model on the optimization parameter by repeating the construction with 8 

different ε values (0, 0.01, 0.1, 0.4, 0.8, 1, 2, and infinity). From a structural point of 

view, we compared the models by the content of their reactions. Notably, despite the 

varying optimization thresholds, the inclusion of many of the reactions in the resulting 

liver models is consistently predicted. The mean jacquard similarity coefficient is 

0.8216.  

 

 From a functional perspective, we evaluated the effect of choosing various pruning 

thresholds on the predictive performance of the resulting model, by repeating the 

prediction of flux alterations and hepatic biomarkers for each of the eight models 

derived. The resulting prediction performances are given in Supplementary Figure 7 

(enclosed below). The analysis reveals that for a wide range of pruning (optimization) 

thresholds, between 0.01 and 1, the overall predictive performance remains in a 

similar range. On the other hand, for extreme values of thresholds, such as zero 

(representing the strict model, where all CM reactions are forced in the model or 
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infinite (representing a model that is constructed without the inclusion of CM  

reactions, except for those added for gap filling), the prediction performances are 

lower. Hence, in summary, these results testify that the flexible MBA framework 

presented here is beneficial, and yet its performance is fairly robust and does not 

hinge upon a choice of a narrow range of threshold optimization values. 

 

Figure 7 The performances of the sensitivity analysis models as well as the liver and 

the generic ones, quantified by the AUC of the ROC curves that depict their ability to 

predict biomarkers (blue), increasing (red) and decreasing (green) fluxes. 
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inactiveReactions = CheckModelConsistency(Rp, r) 

Initialize 
Remove reaction r  from RP  
reactionsList = RP 
inactiveReactions = {r} 

While reactionsList  
Step I – Maximize All 
Solve a LP problem that maximizes the sum of fluxes through all of the reactions 
of reactionsList 
Remove active reactions from reactionsList 
Step II – Minimize All 
Solve a LP problem that minimizes the sum of fluxes through all of the reversible 
reactions from reactionsList. 
Remove active reactions from reactionsList 
Step III – Single Test 
If no reaction was removed from reactionsList in the current iteration 
 Let i be some randomely chosen reaction from reactionsList 

Solve two LP probelms that maximize and minimize the flux through i 
If i is inactive add it to inactiveReactions 
Remove i from reactionsList 

 

Rp- the partial model's reactions, that is, a subset of the generic model’s reactions (RP 

 RG); r- the reaction that is scanned for removal. 

CheckModelConsistency determines which reactions cannot be activated due to the 

removal of r from RP. reactionsList consists of reactions whose activity or inactivity 

is yet to be determined. Each iteration consists of three steps. In the first step, a LP 

problem that maximizes the  sum of fluxes through all the reactions from 

reactionsList is solved. The reactions that were active (i.e., had a non-zero flux) in the 

obtained solution are removed from reactionsList. The second step is quiet similar to 

the first one, only that it minimizes the sum of fluxes through all of the reversible 

reactions from reactionsList. In the third step, if the previous steps did not determine 

the activity of any of the reactions of reactionsList, two other LP problems are solved 

in which the flux through some randomely chosen reactions i from  reactionsList is 

individually maximized/minimized. If i cannot be activated it is added to 

inactiveReactions. Either way i would be removed from reactionsList. Take notice 

that in order to conclude that a reaction can be active, it is sufficient that it had a non-

zero flux in one of the solutions that were obtained. On the other hand, in order to 

conclude that a reaction i  is a dead-end reaction, a LP problem in which only the flux 

through i is maximized should be solved, as well as a LP problem in which i is 

minimized (if i is a reversible reaction). 
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Abbreviations  

ASL Argininosuccinate Lyase 

ASS Argininosuccinate Synthetase  

BAL Bioartificial Liver 

CBM Constraint-Based Modeling 

CH Core High 

CM Core Moderate 

FPR False Positive Rate 

FVA Flux Variability Analysis 

IEMs Inborn Errors of Metabolism 

LP Linear Programming 

MBA Modeling Building Algorithm 

OTC Ornithine Transcarbamylase 

ROC Receiver-Operator Curve 

TPR True Positive Rate 

 


