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Pleiotropy Datasets. The yeast morphological pleiotropy dataset
(1) includes the phenotypic information acquired by fluorescent
imaging of 4,718 yeast nonessential gene deletion haploid strains
as well as the wild-type haploid strain. The phenotypes include
501 quantitative traits of yeast cellular morphology such as cell
shape, actin cytoskeleton, and nuclear morphology. For each
trait, the average phenotypic value of 200 wild-type cells was
obtained from each of 126 independent cultures to estimate the
wild-type mean and variance, and the average value of 200 cells
was obtained from one culture for each deletion strain to esti-
mate the phenotype of the deletion strain. The raw data were
obtained from http://scmd.gi.k.u-tokyo.ac.jp/datamine/. Follow-
ing the suggestion of the original authors (1), we transformed the
raw data of the 501 traits by power transformation (2) and then
checked for normality in distribution among wild-type cells using
the Shapiro–Wilk test. For 222 traits, the phenotypes of the wild-
type cells either are not power transformable or do not follow
normal distributions. These traits were thus excluded from sub-
sequent analysis and the remaining 279 traits were considered in
our morphological pleiotropy data.
Thesizeof thephenotypiceffectofageneonatrait ismeasuredby

the statistical Z-score, which is defined by Z = (md − mwt)/SD,
where mwt and SD are the mean and standard deviation of the
transformedmeasures of the trait fromwild-type cells, respectively,
andmd is the transformed measure of the trait from a cell deficient
of the gene. Note that because md can be larger or smaller than
mwt,Z can be positive or negative. A givenmd−mwt value indicates
a greater fitness effect when it occurs in a more important trait
than in a less important trait. Because the SD of a trait is expected
to be negatively correlated with the strength of stabilizing selection
on the trait (i.e., the importance of a trait to organismal fitness),
Z-scores effectively standardize phenotypic effects in terms of fit-
ness effects and thus are comparable among traits. To determine
the number of traits a gene affects, we calculated the statistical
P values according to the Z-scores using the standard normal dis-
tribution. Because we simultaneously tested 279 traits for each
gene, we corrected for multiple testing using a 5% false discovery
rate (FDR). In other words, if a trait shows a Q value <5% in
a gene-deletion strain, we consider that this trait is affected by this
gene. By this cutoff, a gene affects on average 22 traits. Thus, the
number of false positives is normally <1 trait per gene. We also
used the more conservative Bonferroni correction of multiple
testing, and the results are shown in Fig. S3. After the removal of
genes that do not affect any trait and traits that are not affected by
any gene, the yeast morphological dataset contains 2,449 genes and
253 traits. The information on the fitness effects of individual gene
deletions in yeast was obtained from http://www-deletion.stanford.
edu/YDPM/YDPM_index.html.
The same collection of yeast gene deletion strains was also

screened under 22 different environmental conditions for growth
defects (3). A gene is considered to affect growth under a con-
dition when the deletion strain shows significantly slower growth
than the wild-type strain. Because the data did not contain
quantitative measures of growth rates, the gene–trait relation-
ship is qualitative. That is, a gene either affects or does not affect
a trait. In total, 774 genes affect growth in at least 1 of the 22
environmental conditions. This dataset is referred to as the yeast
environmental pleiotropy dataset.
Wealsoobtainedyeastknockoutphenotype information fromthe

Comprehensive Yeast Genome Database (CYGD) (4), which cat-
alogs literature-curated physiological defects of yeast gene deletion

strains from small-scale experiments. After removing phenotypes
that are annotated as “unclassified,” we obtained our yeast physio-
logical pleiotropy data containing 1,256 genes that affect ≥1 of 120
traits. As in the yeast environmental pleiotropy dataset, this dataset
only has qualitative information about gene–trait relationships.
To identify genes required for early embryogenesis in nem-

atodes, a recent study used genome-wide RNA-mediated in-
terference (RNAi) to silence gene expression in early C. elegans
embryos (5). The targeted RNAi experiment for each gene was
repeated in six embryos, and 45 phenotypic traits were screened
for developmental defects. We consider that a gene affects a trait
if at least two of the six embryos showed phenotypic defects.
After the removal of one trait named “complex phenotype,” we
obtained our nematode pleiotropy dataset including 661 genes
that affect ≥1 of 44 traits. This dataset provides only qualitative
information about gene–trait relationships.
The mouse pleiotropy data were derived from annotations of

MGI version 4.2 (http://www.informatics.jax.org/) (6). At the
time of this study, 5,586 mouse genes were annotated with one
or more Mammalian Phenotype (MP) IDs indicating the phe-
notypes when the genes were knocked out, knocked down,
mutated by transgenic insertions, or occasionally mutated by
point mutations. MP IDs are hierarchically structured. That is,
one parent MP ID (e.g., MP:0002102, abnormal ear morphol-
ogy) represents a phenotype lineage that may include several
child MP IDs to describe a more detailed phenotype (e.g.,
MP:0000026, abnormal inner ear morphology; MP:0002177,
abnormal outer ear morphology). Here, we used 308 parent MP
IDs to define the pleiotropy of mouse genes. These 308 MP IDs
were manually selected using the criterion that each MP ID
should be phenotypically distinct, if not independent, from the
other MP IDs. If a mouse gene is annotated for a child MP, its
parent MP ID is used. Consequently, pleiotropy of 4,915 mouse
genes associated with at least 1 of the 308 MP IDs was ob-
tained. This dataset provides only qualitative information of
the gene–trait relationships.

Simulating Normally Distributed Phenotypic Effects of Genes. For
a given gene i, we first calculated the SD (σi) of its phenotypic
effect size distribution from the yeast morphological pleiotropy
data. Note that, in this calculation, we used the phenotypic ef-
fects of the gene on all 279 traits, regardless of whether these
effects are statistically significant. We then randomly generated
this gene’s phenotypic effects on each of the 279 traits using
a normal distribution with mean = 0 and SD = σi. We per-
formed these steps for all 4,718 genes to produce a 4,718 × 279
random effect-size matrix. We then analyzed this simulated da-
taset following the analysis of the real data.
To examine the impact of different SDs of different genes on our

results, we conducted the second simulation. The procedure is the
same as the above simulation, except that, insteadof using different
SDs for different genes, we used the same SD for all genes. This SD
used was the mean SD of all genes in the actual data.

Principal Component Analysis of Phenotypic Traits. To obtain in-
dependent phenotypic traits, we performed a principal component
analysis of the wild-type phenotypic matrix from the yeast morpho-
logical pleiotropy data. The wild-type phenotypicmatrixW, in which
the 126 rows represent independent wild-type cell cultures and the
279 columns correspond to the original phenotypic traits, was first
standardized into Z-scores by each column. The principal compo-
nent analysis was conducted usingMATLAB to obtain the principal
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component coefficientmatrixC.After the linear transformationwith
the coefficientmatrix, the compound phenotypicmatrixW′=W×C
becomes orthogonal. We then applied this linear transformation to
the standardized mutant phenotypic matrix M to obtain the com-
poundmutant phenotypicmatrixM′=M×C. InMandM′, each row
is a deletion strain and each column is a trait.

Genes Affecting More Traits Have Larger Per-Trait Effects on Average.
Comparing two genes both with normal distributions of ef-
fect sizes but with different SDs, here we prove mathematically
that the gene with the larger SD affects more traits (when an
effect-size cutoff is applied) and has on average a larger per-
trait effect.
For a given gene, let f(x) be the probability density function of

the distribution of effect size, where effect size is measured by
Z-scores. On the basis of empirical observations, we assume that
f(x) is a normal distribution with mean = 0 and SD = t, or

f ðxÞ ¼ 1ffiffiffiffiffi
2π

p
t
e− x2=ð2t2Þ: [S1]

Let g > 0 be the cutoff used to determine whether a trait is re-
garded as being affected significantly by the gene. The mean
effect size per trait F(t) can be expressed as

FðtÞ ¼
Ðþ∞
g xf ðxÞdxÐþ∞
g f ðxÞdx ¼ uðtÞ

vðtÞ; [S2]

where uðtÞ ¼ Ðþ∞
g xf ðxÞ dx and vðtÞ ¼ Ðþ∞

g f ðxÞdx: Below, we
prove that F(t) is a monotonically increasing function of t, or
F′(t) > 0.
We have

F′ðtÞ ¼ u′ðtÞvðtÞ− uðtÞv′ðtÞ
v2ðtÞ ¼ vðtÞ− uðtÞv′ðtÞ=u′ðtÞ

v2ðtÞ ¼ A
B
; [S3]

where A ¼ vðtÞ− uðtÞv′ðtÞ=u′ðtÞ and B ¼ v2ðtÞ:We can derive that
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A is positive. Because B is also positive, F′(t) is positive. In other
words, F(t) is a monotonically increasing function of t.
LetN be the total number of traits considered. Then the number

of traits affected by a gene is nðtÞ ¼ NvðtÞ. Because v′ðtÞ is positive,
n is a monotonically increasing function of t. Thus, both F(t) and
n(t) increase with t. In other words, when t is larger, both the
number of affected traits and the mean effect size increase, which
creates the phenomenon of larger per-trait effect sizes for genes
affecting more traits. Although in the above proof only traits with
Z-scores larger than a positive cutoff g are considered to be affected
by a gene, the result is the same when traits with Z-scores smaller
than a negative cutoff g are considered to be affected, because f(x)
is symmetrical to 0. Thus, when all traits with absolute Z-scores
larger than a cutoff g >0 are considered to be affected, which is
what we did in actual data analysis, the above proof is also valid.
Note that our proof assumes that we use a constant cutoff g > 0

for all genes. In the actual data analysis, the cutoff may vary for
different genes when the same false discovery rate is used to
determine the cutoff. However, the small variation in cutoff
apparently did not affect the general trend of larger per-trait
effect sizes for genes affecting more traits.
Also note that here we used a normal distribution to model the

effect sizes of a gene on various traits because the normality is
what we empirically observed (Fig. 3A). The normality is not
necessary for the phenomenon that genes affecting more traits
have on average larger per-trait effects.

Existence of Nonzero noptimal When b > 0.5. Let TE be the total
phenotypic effect size of a mutation measured by the Euclidian
distance and n be the degree of pleiotropy (or effective organ-
ismal complexity). Here we prove that when the exponent b > 0.5
in the scaling relationship of TE ¼ anb, the highest adaptation
rate occurs at an intermediate n. On the basis of Orr (7), the
adaptation rate of a population is

UðnÞ ¼ dw
dt

¼ −
4kT 2

E

n
M w lnw ¼ − 4ka2n2b− 1Mw lnw; [S7]

where k is a positive constant dependent on population size and
mutation rate, 0 < w < 1 is the current mean fitness of
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[S8]

It can be shown by Maxima (http://maxima.sourceforge.net/),
a computer algebra system, that
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dð ffiffiffiffiffi
2π

p
MÞ

dx
¼

d
�
− xe− x2=2 þ ffiffiπ

2

p ð1þ x2ÞErfcð xffiffi
2

p Þ
�

dx
¼ − 2e− x2=2 þ

ffiffiffiffiffi
2π

p
xErfcð xffiffiffi

2
p Þ;

[S9]

where Erfc(x) is the complementary error function:

ErfcðxÞ ¼ 1−Erf ðxÞ ¼ 2ffiffiffi
π

p
ðþ∞

x
e− t2dt: [S10]

Combining Eqs. S8 and S9, we have

U′ðnÞ ¼ − 4ka2n2b− 2 w lnwffiffiffiffiffi
2π

p mðxÞ; [S11]
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ffiffiffi
π
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When b =0, mðxÞ ¼ −
ffiffiπ
2

p
Erfcð xffiffi

2
p Þ< 0. Thus, U′(n) < 0. This

result means that U(n) decreases with n. Let noptimal be the n
with the largest U. Our results indicate that noptimal = 0.
When b = 0.5, we can show that
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The last step is true because x is biologically meaningful only
when it is positive. This result means that U′(n) < 0 and U(n)
decreases with n. In other words, noptimal = 0.
When b > 0.5, we have

mð0Þ ¼
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π
2

r
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9
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− 2e− 2
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¼ − 0:0564b< 0:

Because m(x) is a continuous function, 0 < xoptimal < 2 exists for
which m(x) = 0 and U′(n) = 0. As x moves from 0 to 2, U′
changes from positive to negative, indicating that xoptimal cor-
responds to a peak of U. The n value determined by xoptimal thus
corresponds to a peak of U and is positive. Thus, we proved
that, when b > 0.5, a positive noptimal exists.
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Fig. S1. Frequency distribution of the mean effect size (measured by Z-score) of a gene on the 279 morphological traits for all 4,718 yeast genes. Note that the
effect of a gene on a trait can be either positive or negative.
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Fig. S2. The phenomenon of larger per-trait effects from genes affecting more traits is robust. Observed scaling relationships between the degree of plei-
otropy and (A) Euclidean distance or (B) Manhattan distance are shown, on the basis of the yeast morphological pleiotropy data from which a random 50% of
the traits are removed. The orange curve is the best fit to the power function whose estimated parameters are shown in the upper left. The numbers after ±
show the 95% confidence interval for the estimated scaling exponent. C and D are similar to A and B except that the dataset used is generated after the
random removal of 90% of the traits. E and F are similar to A and B except that the dataset used is generated by merging traits with a Pearson’s correlation
coefficient in gene effects >0.7.

Wang et al. www.pnas.org/cgi/content/short/1004666107 4 of 7

www.pnas.org/cgi/content/short/1004666107


0

0.1

0.2

0.3

0.4

0.5

1 50 100

a

F
re

q
u
e
n
c
y

Degree of pleiotropy

Mean: 8.1±0.6 (3%)

Median: 3±0.4 (1%)

1 50 100
0

25

50

75

125

100

T  =3.6*n0.691±0.010E

T
o
ta

l 
e
ff
e
c
t 
s
iz

e
 i
n

E
u
c
lid

e
a
n
 d

is
ta

n
c
e
 (

T
  
)

E

Degree of pleiotropy (n)

b

1 50 100
0

200

600

400

800

Degree of pleiotropy (n)

T
o
ta

l 
e
ff
e
c
t 
s
iz

e
 i
n

M
a
n
h
a
tt
a
n
 d

is
ta

n
c
e
 (

T
  
)

M

c

T  =3.4*n1.175±0.011M

0

0.05

0.1

0.15

0.2

0.15 0.2 0.25 0.3 0.35

Observed

Scaled modularity: 170

F
re

q
u
e
n
c
y

d

Modularity

R  =0.912 R  =0.972

Fig. S3. Yeast morphological pleiotropy data analyzed using the conservative Bonferroni method to correct for multiple testing. (A) Genome-wide frequency
distribution of the degree of gene pleiotropy. The numbers in parentheses are the mean and median degrees of pleiotropy divided by the total number of
traits. After the removal of genes that do not affect any trait and traits that are not affected by any gene, there are 2,091 genes and 264 traits. (B) Observed
modularity (blue arrow) and the distribution of modularity for 250 randomly rewired networks (red histograms). Observed scaling relationships between the
degree of pleiotropy and the total effect size measured by (C) Euclidean distance or (D) Manhattan distance are shown. The orange curve is the best fit to the
power function whose estimated parameters are shown in the upper left. The numbers after ± show the 95% confidence interval for the estimated scaling
exponent. R2 indicates the square of the correlation coefficient.

T  =5.8*n0.438±0.020E

T
o

ta
l 
e

ff
e

c
t 

s
iz

e
 i
n

E
u

c
lid

e
a

n
 d

is
ta

n
c
e

 (
T

  
)

E

Degree of pleiotropy (n)

a b

Degree of pleiotropy (n)

T
o

ta
l 
e

ff
e

c
t 

s
iz

e
 i
n

M
a

n
h

a
tt

a
n

 d
is

ta
n

c
e

 (
T

  
)

M

T  =5.8*n0.897±0.014M

0

25

50

75

100

0 10 20 30

0

50

100

150

0 10 20 30

Fig. S4. Observed scaling relationships between the degree of pleiotropy and the total effect size measured by (A) Euclidean distance or (B) Manhattan
distance, when the effect sizes of all genes on all traits in the actual data are randomly shuffled. The orange curve is the best fit to the power function whose
estimated parameters are shown in the upper left. The numbers after ± show the 95% confidence interval for the estimated scaling exponent.

0

25

50

75

100

125

0 50 100 150 200 250

0

300

600

900

1200

0 50 100 150 200 250

T
o
ta

l 
e
ff
e
c
t 
s
iz

e
 i
n

E
u
c
lid

e
a
n
 d

is
ta

n
c
e
 (

T
  
)

E

T
o
ta

l 
e
ff
e
c
t 
s
iz

e
 i
n

M
a
n
h
a
tt
a
n
 d

is
ta

n
c
e
 (

T
  
)

M

Degree of pleiotropy (n)

T  =4.4*n0.544±0.003E T  =4.1*n1.023±0.003M

Degree of pleiotropy (n)

a b

Fig. S5. Observed scaling relationships between the degree of pleiotropy and the total effect size measured by (A) Euclidean distance or (B) Manhattan
distance, when the phenotypic traits are orthogonalized. The orange curve is the best fit to the power function whose estimated parameters are shown in the
upper left. The numbers after ± show the 95% confidence interval for the estimated scaling exponent.

Wang et al. www.pnas.org/cgi/content/short/1004666107 5 of 7

www.pnas.org/cgi/content/short/1004666107


Table S1. Robustness of pleiotropy estimates

Gene
pleiotropy
datasets

No. of
traits

Mean
pleiotropy

95% confidence
interval of

mean pleiotropy

Mean pleiotropy
divided by
no. of traits

Median
pleiotropy

95% confidence
interval of

median pleiotropy

Median pleiotropy
divided by
no. of traits

Yeast morphological pleiotropy
100% of traits used 279 21.6 [20.2, 23.1] 0.077 7 [6, 8] 0.025
50% of traits used 140 10.9 [9.9, 11.9] 0.078 4 [3, 4] 0.029
10% of traits used 28 2.2 [1.7, 2.6] 0.079 1 [0, 1] 0.036

Yeast environmetnal pleiotropy
100% of traits used 22 2.4 [1.7, 3.2] 0.109 2 [1, 3] 0.091
50% of traits used 11 1.2 [0.7, 1.8] 0.109 1 [0, 1] 0.091
10% of traits used 2 0.2 [0.1, 0.5] 0.100 0 [0, 0] 0.000

Yeast physiological pleiotropy
100% of traits used 120 1.8 [1.3, 2.5] 0.015 1 [1, 2] 0.008
50% of traits used 60 0.9 [0.5, 1.4] 0.015 1 [0, 1] 0.017
10% of traits used 12 0.2 [0.1, 0.4] 0.017 0 [0, 0] 0.000

Nematode pleiotropy
100% of traits used 44 4.6 [3.7, 5.6] 0.105 4 [3, 6] 0.091
50% of traits used 22 2.3 [1.7, 3.0] 0.105 2 [1, 3] 0.091
10% of traits used 4 0.5 [0.2, 0.7] 0.125 0 [0, 1] 0.000

Mouse pleiotropy
100% of traits used 308 8.2 [7.1, 9.3] 0.027 6 [5, 6] 0.019
50% of traits used 154 4.1 [3.3, 4.9] 0.027 3 [2, 3] 0.019
10% of traits used 31 0.8 [0.5, 1.2] 0.026 1 [0, 1] 0.032

Table S2. Comparison between the observed genomic patterns of pleiotropy and assumptions made in the existing theoretical models of
pleiotropy

Features
Invariant total
effect model*

Euclidean
superposition

model†

Observed
genomic
patterns

Proportion of traits affected by a gene 100% 100% 1–9%
Modularity of the gene–trait network None None High
Distribution of effect size on a trait Uniform Normal Normal
Among-gene variation in SD of the
effect-size distribution

Absent Absent Present

Total effect size Constant Increase with pleiotropy Increase with pleiotropy
Per-trait effect size Decrease with pleiotropy Constant Increase with pleiotropy
Scaling exponent b 0 0.5 0.6
Scaling exponent d 0.5 1 1.1
Degree of pleiotropy (i.e., complexity) that
offers the highest adaptation rate

1 1 Intermediate level of pleiotropy

*Fisher (1) and Orr (2).
†Turelli (3), Wagner (4, 5), and Waxman and Peck (6).

1. Fisher RA (1930) The Genetic Theory of Natural Selection (Clarendon, Oxford), 2nd Ed.
2. Orr HA (2000) Adaptation and the cost of complexity. Evolution 54:13–20.
3. Turelli M (1985) Effects of pleiotropy on predictions concerning mutation-selection balance for polygenic traits. Genetics 111:165–195.
4. Wagner GP (1988) The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. J Evol Biol 1:45–66.
5. Wagner GP (1989) Multivariate mutation-selection balance with constrained pleiotropic effects. Genetics 122:223–234.
6. Waxman D, Peck JR (1998) Pleiotropy and the preservation of perfection. Science 279:1210–1213.
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Table S3. High modularity of gene–trait networks

Gene pleiotropy datasets No. of traits No. of genes Modularity Scaled modularity

Yeast morphological pleiotropy (all traits) 279 2,449 0.204 36.8
Yeast morphological pleiotropy (random half of the traits) 140 1,902 0.221 37.7
Yeast morphological pleiotropy (after the merge of related traits)* 197 2,272 0.209 45.0
Yeast environmetnal pleiotropy (all traits) 22 774 0.440 35.1
Yeast environmetnal pleiotropy (random half of the traits) 11 448 0.579 13.6
Yeast environmetnal pleiotropy (after the merge of related traits)* 22 774 0.440 35.1
Yeast physiological pleiotropy (all traits) 120 1,256 0.580 34.2
Yeast physiological pleiotropy (random half of the traits) 60 712 0.673 62.6
Yeast physiological pleiotropy (after the merge of related traits)* 118 1,256 0.575 27.0
Nematode pleiotropy (all traits) 44 661 0.544 50.4
Nematode pleiotropy (random half of the traits) 22 579 0.473 48.2
Nematode pleiotropy (after the merge of related traits)* 44 661 0.544 50.4
Mouse pleiotropy (all traits) 308 4,915 0.384 237.5
Mouse pleiotropy (random half of the traits) 154 4,901 0.449 197.4
Mouse pleiotropy (after the merge of related traits)* 307 4,915 0.376 202.8

*Traits with Pearson’s correlation coefficient >0.7 are merged. Some datasets do not contain such correlated traits.
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