Online Supplemental

Short title: Portal Osmopressor Mechanism Linked to TRPV4

Portal Osmopressor Mechanism Linked to TRPV4 and Blood Pressure Control

Julia McHugh¹, Nancy R. Keller¹, Martin Appalsamy¹, Steven A. Thomas², Satish R. Raj¹, André Diedrich^{1,3}, Italo Biaggioni¹, Jens Jordan⁴, and David Robertson^{1,5,6}

¹Autonomic Dysfunction Center, Departments of Medicine and Pharmacology, Vanderbilt University, ²Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, ³Department of Biomedical Engineering, Vanderbilt University, ⁴Institute of Clinical Pharmacology, Medical School Hannover, Carl-Neuberg-Straße 1, D-30626 Hannover, Germany, ⁵Department of Neurology, Vanderbilt University, ⁶Center for Molecular Neuroscience, Vanderbilt University

Corresponding Author: David Robertson M.D., Director

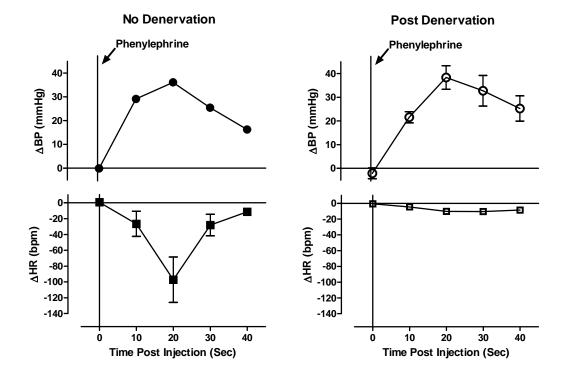
Clinical & Translational Research Center

Vanderbilt Institute for Clinical and Translational Research

Elton Yates Professor of Medicine, Pharmacology and Neurology

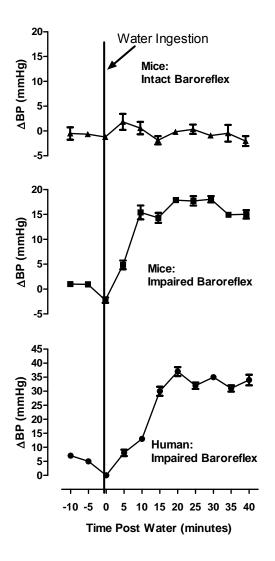
Vanderbilt University School of Medicine

AA 3228 Medical Center North

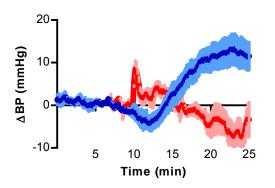

1161 21st Avenue South

Nashville TN 37232-2195

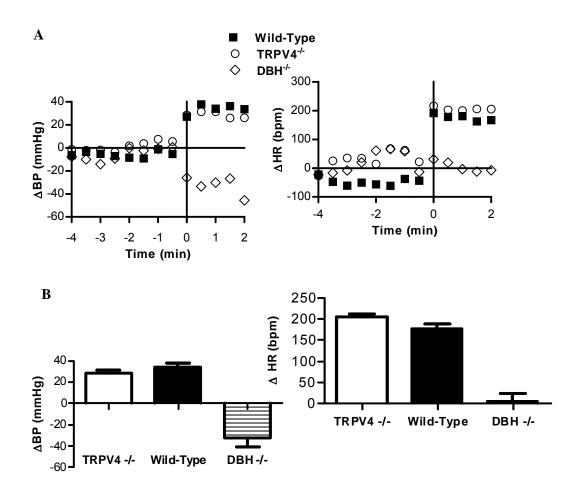
Tel +1 615-343-6499


Fax +1 615-343-8649

David.robertson@vanderbilt.edu


S1. Blunted HR response to phenylephrine after baroreflex deafferentation.

Representative BP and HR changes after i.v. phenylephrine (t = 0), pre and post baroreflex deafferentation. Phenylephrine challenge was used to validate successful baroreflex deafferentation in mice.



S2. BP profile during water consumption in humans and mice.

Mice with intact baroreflexes show little BP response to water infusion, since baroreflex buffering attenuates it. Surgically baroreflex-impaired mice, as well as patients with baroreflex impairment, show a robust increase in BP that is sustained well beyond the period of water ingestion. This enhanced pressor response facilitates mechanistic studies of water's cardiovascular effects.

S3. Role of plasma volume in pressor response. 150 µL intravenous saline (*red*), given at 10 minutes elicited only a small, transient pressor response. Duodenal (*blue*) infusion of water is shown for comparison.

S4. *Trpv4^{-/-}* have intact sympathetic efferents. A, Representative tracings of the change in BP and HR during restraint for wild-type (\blacksquare), *Trpv4^{-/-}* (\circ), and *Dbh^{-/-}* (\diamond) mice. B, Average change in BP and HR during 2-minute restraint.