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1 Brownian Dynamics of a Rigid Rod

Let us discuss the method to describe the evolution of filament network formation in detail. In this
study, we apply Brownian Dynamics (BD) simulation method for rigid bodies. We also employ
the Lie-group-theoretic method to describe the configurations of a rigid rod. In particular, we
utilize the Special Euclidean group SE(3) for the position and the orientation of a rod. See (1, 2)
for detailed explanation on the Lie-group-theoretic method. Let g = (r, R) ∈ SE(3) denote the
position and orientation of a filament. The equation of motion for a rigid rod, or so-called Langevin
equation, is written as

Γξ = F+ FR(t) (1)

where Γ = diag (Γr, Γt) denotes the damping coefficient matrix. Each diagonal block element is
defined as (3):

Γt =

 ζ∥ 0 0

0 ζ⊥ 0
0 0 ζ⊥

 (2)

with

ζ∥ =
2πηL

ln(L/dfil)− 0.2

ζ⊥ =
4πηL

ln(L/dfil) + 0.84

(3)

and

Γr =

 ζa 0 0
0 ζr 0
0 0 ζr

 (4)

with

ζa = πηd2filL

ζr =
1
3πηL

3

ln (L/dfil)− 0.66
.

(5)



Here L, dfil, and η denote the length and diameter of a rod, and the viscosity of water, respectively.
ξ = [ωT vT ]T denotes the so-called body-fixed velocity of the filament with ω and v denoting the
angular and linear velocity, respectively. F = [τT fT ]T denotes the wrench (torque τ and force f)
on the rigid body. This wrench includes the force and torque from the tail domain binding and/or
filament-filament interactions. F represents a wrench vector viewed from the frame that is rigidly
attached to the rigid rod, known as the body fixed frame. So is the random excitation term FR(t).
When it represents a spatial quantity viewed from the spatially fixed or lab frame, a superscript ‘s’
is attached, as in Fs. We keep this notation hereafter. By using the following matrix differential
equation

g−1dg

dt
= ξ̂ (6)

where

ξ̂ =

(
ω̂ v
0T 0

)
(7)

and, with ω = [ω1, ω2, ω3]
T ∈ R3,

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (8)

we can obtain the position and the orientation of each filament. This method is simple to implement
and singularity-free.

2 How to Obtain the Stiffness of Tail Domain Binding

Another key issue in our modeling effort is how to treat tail domain binding. As mentioned in the
main text, we opted to treat the tail domain binding as a spring connection. The binding potential
energy is written as

U =
1

2
k (∥pi − pj∥ − d0)

2 (9)

where pi = ri + Riai denotes the binding point, where the subscript i refers to the filament on
which this point is described. See Figure 1 below for a graphical explanation. That is, we only
consider a linear spring connection. d0 denotes the intrinsic, or energetically favorable, distance
between the center lines of two filaments.

The value of k is not currently known. One way to estimate it is to relate it to the free energy
∆G. Mathematically speaking, we expand the binding free energy F around the reference or

intrinsic points: F = F0 +
∂F
∂x

∣∣∣
x0

(x− x0) +
1
2 (x− x0)

T ∂2F
∂x2

∣∣∣
x0

(x− x0). Here x and x0 denote the

configuration variable and its intrinsic value. Since ∂F
∂x

∣∣∣
x0

= 0, we only have two terms to consider.

F0 is a constant term which is equal to ∆G, and the last term which is written as the sum of
quadratic terms without coupling becomes U . Applying this into our current model, the energy is
written as

F = ∆G+
1

2
k (∥pi − pj∥ − d0)

2 . (10)
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Figure 1: Schematic illustration of filament configuration

The spring constant k can be calculated from the position where F = 0 at d = dcutoff . In other
words,

k =
−2∆G

(dcutoff − d0)
2 (11)

where dcutoff = ∥pi − pj∥F=0. From this, we can estimate the stiffness k.

Now let us discuss how to obtain ∆G. Since we know that Kd = 2 µM for the interaction between
K14’s tail domain and K5-K14 filaments, we can determine the free energy change for a tail domain
binding in the standard state (i.e., 1 M concentration of filaments, tail domains and tail-filament
complexes) by using (3):

Kd = exp

(
∆G0

kBT

)
. (12)

In other words,
∆G0 = kBT ln (Kd) . (13)

Numeric value of the standard free energy is ∆G0 = −0.054 [pN·µm] = −54 [pN·nm]. Then the
free energy in our situation is computed as (3)

∆G = ∆G0 − kBT ln

(
[T ]c[F ]c
[TF ]c

)
(14)

where [T ]c = 1 mg/mL = 18.18µM in this case. T and F denotes the tail domain and keratin
filament, respectively. Looking at figure 2B′ in (4), one can see that at the concentration above
15 µM, the bound fraction is 1, which means [TF ]c ≈ [F ]c. In case when [T ]c = 18.18µM,
∆G = −0.0091 [pN·µm]. This represents the free energy for one tail domain binding event in the
current work.

The spring constant of a binding event can then be calculated from the consideration of ∆G with
dcutoff = 15 nm as k = 726.5 pN/µm. Note that the stiffness of a single myosin head attached to
actin is measured as 1.2 pN/nm (5). Hence our estimation of binding stiffness appears to be within
a reasonable range. Importantly, once a tail domain and its binding site bind together, then they
are treated as connected by a spring of which the stiffness is k, as detailed above. This association



event is described with the cut-off distance. Detachments are described with a single parameter,
dissociation rate constant, as conveyed in the main text.

3 Details on the Dissociation Rate Constant

We first would like to calculate the possible range of association/dissociation rate constants from
the experiments reported in (4). We start from the fact that Kd = 2µM for K14 tail binding
domain in order to determine the dissociation rate constant koff . Given that K14’s tail domain is
52 amino acid residues in length, one can estimate its size as a particle to be about 0.8 ∼ 5 nm,
whether it is treated as a freely jointed chain entangled in the solution, or fully stretched. The
association rate constant kon in this case then can be computed as (6–8):

kon = 4πD0dc (15)

where dc denotes the effective distance within which a given tail particle and its binding site are
considered bound. The diffusion coefficient of the particle is denoted as D0. Since we elected a
∼ 5 nm effective distance dc between the free tail particle and the binding site on the filament,
we obtain kon = 1.6 ∼ 10µM−1s−1. Therefore we choose the association rate constant to be
5µM−1s−1, with the associated dissociation rate constant being 10 s−1. This is consistent with the
assumption that dcutoff = 15 nm, as conveyed in the main text.

4 Computational Details

4.1 Tail Binding

In this section, we explain how to actually implement the Langevin equation. As mentioned, we
treat this binding as a spring-like connection. Let us detail this notion with a single point contact
binding event (see Figure 2 below). Let gi = (ri, Ri) and gj = (rj , Rj) denote the position and
orientation of the center of mass of the i−th and the j−th filament, respectively. The location
of a contact/binding point from the center of mass of each filament is denoted ai and aj . These
position vectors are viewed from the body-fixed frames. asi denotes the same vector viewed from
the spatial frame of reference.

The force acting on the i−th rod by the j−th rod is computed by the aforementioned potential
energy as

f sij = − ∂U

∂pi
= −k (∥pi − pj∥ − d0)

pi − pj

∥pi − pj∥
. (16)

Since the point of force has a different location than the center of mass, it exerts a moment as well.
In total, the wrench acting on the i−th rod which is viewed from the spatial frame is computed as

Fs
i =

(
τ s
ij

f sij

)
=

(
asi × f sij

f sij

)
. (17)
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Figure 2: Schematic cartoon explaining the equation of motion for the spring-like binding event

Changing view from the spatial frame to body frame can be done as

Fi = RT
i F

s
i (18)

where

Ri =

(
Ri 03×3

03×3 Ri

)
(19)

In the case of contact through many points, we still can use the aforementioned approach although
genesis of corresponding pairs of contact becomes an important consideration. Since we treat each
filament as a rigid rod with pre-fixed tail and binding domains on it, we can calculate the distance
and corresponding points on both participating filaments (or lines). We pick the nearest tail or
binding domain site relative to the point from which the distance is calculated. Then we can select
pairs of sites until the distance between those paired sites are within the cut-off distance specified.
Wrenches can then be summed up. In this manner, we can compute the total wrench (moment and
force) applied on the filament more efficiently.

The actual integration of the differential equations is as follows. First, we compute the velocity
using the Langevin equation for each filament as

Γξ(t) = F(t) + FR(t). (20)

Then the position and orientation of each filament is updated as

g(t) = g(t−∆t) exp
[
∆t ξ̂(t)

]
, (21)

or one can use the trapezoidal method as

g(t) = g(t−∆t) exp

[
∆t

2

(
ξ̂(t) + ξ̂(t−∆t)

)]
. (22)



Time step in dynamic simulation is important. It is known that for a particle connected by a
spring whose stiffness is k, time constant is τ = γ/k (3). Time scale smaller than this is considered
correlated motion, whereas larger time scale renders uncorrelated motion. Due to the nature of a
rod having different drag coefficients, this time constant varies from 10−10 sec to 10−6 sec in our
study. One also has to consider the effect of time step on the spring force. When two filaments
become sufficiently close each other, a stiff spring is bound to generate unnaturally large force given
small displacement between filaments, if the time step is not sufficiently small. On the other hand,
a higher computation cost is generated when the time step value is made too small. In our study, we
first calculate τ = min (Γ/k). After considering all these elements, we choose ∆t = τ×10 ∼ τ×100
seconds.

4.2 Filament Interactions

Distance [ µm ]

In
te

ra
ct

io
n 

en
er

gy
 [ 

k B
T

 / 
µm

2  ]

 

 

exact
approximate

df
0

df
cutoff

∆ Gf

0

Figure 3: Possible energy form of filament interaction and its approximate version used in the study.
Any type of interactions with both attractive and repulsive parts can be approximated with this function.
The main parameters are ∆Gf , dfcutoff , and df0 which are functions of ionic strength in the solution.

As stated in the main text, we use the following simple form of energy

U f = ∆Gf +
1

2
kf

(
df − df0

)2
. (23)

where pi = ri + Ri[ℓi 0 0]T and df = ∥pi − pj∥. Figure 3 provides a graphical account of the
approximate energy and its parameters, which are function of the ionic strength in the solution.
Then the force between infinitesimal segments on each filament is computed as

δf sij = −kf
(
df − df0

) pi − pj

df
(24)

and δf sji = −δf sij . Then we can apply a force as

f sij =

∫ L/2

ℓ1=−L/2

∫ L/2

ℓ2=−L/2
δf sijdℓ2dℓ1. (25)



Moments are

ms
ij =

∫
ℓ1

∫
ℓ2

ℓ1Rie1 × δf sijdℓ2dℓ1 (26)

and

ms
ji =

∫
ℓ1

∫
ℓ2

ℓ2Rje1 × δf sjidℓ2dℓ1. (27)

Explicitly,

f sij =

∫ L/2

ℓ1=−L/2

∫ L/2

ℓ2=−L/2

[
−kf (ri − rj) + kfdf0 (ri − rj)

1

df
+ kfdf0Rie1

ℓ1
df

− kfdf0Rje1
ℓ2
df

]
dℓ2dℓ1,

(28)

ms
ij =

∫
ℓ1

∫
ℓ2

[
Rie1 × kfdf0 (ri − rj)

ℓ1
df

+Rie1 ×
(
−kfdf0Rje1

) ℓ1ℓ2
df

]
dℓ2dℓ1 (29)

and

ms
ji =

∫
ℓ1

∫
ℓ2

[
−Rje1 × kfdf0 (ri − rj)

ℓ2
df

−Rje1 ×
(
kfdf0Rie1

) ℓ1ℓ2
df

]
dℓ2dℓ1. (30)

In order to obtain these forces and moments, we perform numerical integrations. It is worth noting
that the unit of the interaction energy is kBT/µm

2, not kBT . This therefore affects the unit of
k. This approach is mathematically exact in calculating interaction forces. Once we compute the
force and the torque, the algorithm already explained in the previous section is applied.

Another important issue to consider is the periodic boundary condition. Balancing the number
of filaments which cross the boundaries is insufficient because of filament interactions. In order
to truly reflect the continuum characteristics of the simulation space, we copy the rectangular
parallelopiped part of which the thickness corresponds to half the length of a filament from each
side of the cubic space and paste it onto the opposite side. This is done at every time step during
the simulation. In this manner one can take the effect of having filaments outside the cubic space
into account.
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Supplemental Figure Legends

Fig. S1: Simulation results of filament behavior in the presence of long-range filament interactions,
minus the contribution of tail domain-mediated binding events, after 5 × 105 steps (equivalently,
after 21.6 ms). The parameters defining long-range interactions are: ∆Gf = −100 kBT/µm

2,
df0 = 20 nm, and dfcutoff = 40 nm. (A) Final configuration; (B) Filament RMSD. Note that self-
avoiding effects between filaments are not included in the simulation; including them would lead
to a configuration similar to that reported in (1).

Fig. S2: Simulation results when tail domains exist as free particles, as opposed to covalently
bound on polymerized K14 molecules. The numbers of filaments and tail domain copies are the
same as in the previous simulations (Fig. 1 and 2). Times step was chosen as t ∼ 4.3 ns. The
cut-off distance for the tail particle binding is now 7.5 nm which is the half of that prevailing in
the previous simulation (Fig. 1 and 2); this makes it consistent with previous simulations in which
the cut-off distance is 15 nm. One particle is allowed to bind to a maximum of two filaments.
In this simulation, we included dissociation effect for tail particles (see Fig. 3 in the main text).
(A) Initial Configuration; (B) Configuration after 0.74 ms (n = 2 × 105 steps) with inclusion of
filament interactions and tail binding events; (C ) Configuration after 2.6 ms (n = 6 × 105 steps)
with tail binding events but without long-range interactions between filaments; (D) Number of
particles making a bridged connection between two filaments as outlined in case (B); (E ) Number
of particles making a bridged connection between two filaments as outlined in case (C ); (F ) Number
of particles bound to filaments, or number of pairs, as outlined in case (B); (G) Number of pairs
as outlined in case (C ). These results show that there is a huge disadvantage in the crosslinked
network formation when the tail domains exist as free particles. This conclusion partly explains
why keratins have evolved into the current form, i.e., with filament binding sites present in cis on
keratin proteins.

Reference for the Legends

Cui, H., E.T. Pashuck, Y.S. Velichko, S.J. Weigand, A.G. Cheetham, C.J. Newcomb, and S.I.
Stupp, 2010. Spontaneous and X-ray-triggered crystallization at long range in self-assembling
filament networks. Science 327: 555–559.
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Supplemental Movies

• Movie S1: Time evolution of configuration shown in Fig. 1B in the main text. Filament
network topology achieved when only tail domain binding events are included.

• Movie S2: Time evolution of configuration shown in Fig. 2B in the main text. Filament net-
work topology achieved when tail domain binding events and long-range interactions between
filaments are included.

• Movie S3: Time evolution of configuration shown in Fig. 3A in the main text. Filament
network topology achieved when tail domain binding events are reversible (kon = 5µM−1s−1;
koff = 10 s−1).

• Movie S4: Time evolution of configuration shown in Fig. 3B in the main text. Filament
network topology achieved when filaments are longer(L = 2µm).

• Movie S5: Time evolution of configuration shown in Fig. 4C in the main text. Filament
network topology achieved when filaments are shorter(L = 0.5µm).
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