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METHODS 

The structure and energetics of the pseudoatomic model 

Generation of the pseudoatomic models began with all-atom representations of wild-type 

barnase and barstar taken from the crystal structure of the barnase-barstar complex reported by 

Buckle et al. (1; pdb code: 1BRS). In addition to wild-type barnase, three charge-mutants (E60A, 

R87A, and R59A) were selected for study on the basis of their wide-ranging effects on the 

association rate constant of the complex: the E60A mutation results in an approximately 5-fold 

increase over the wild-type association rate, while the R59A mutation results in an 

approximately 10-fold decrease (2,3). These mutants were modeled by removing the sidechain 

atoms beyond the Cβ atom of the mutated residue. To determine effective charges for the 

pseudoatomic models, electrostatic potentials around the corresponding all-atom models were 

first solved using the adaptive Poisson-Boltzmann solver (APBS) program (4). For these 

calculations hydrogen atoms were first added to each protein structure using the APBS utility 

PDBTOPQR (5,6); partial charges and radii were then assigned to atoms from the PARSE 

parameter set (7).  The internal dielectric of the protein was set to 12.0, the solvent dielectric was 

set to 78.4, and the ionic strength was set to the corresponding experimental value, 50 mM. (For 

results with ionic strength set to 500 mM, see Additional Results.) The nonlinear PB equation 

was then solved on a 3D 129 × 129 × 129 grid of spacing 1 Å. 

 Pseudoatomic models were constructed by applying the q_pdb utility from the Situs suite of 

programs (8) to barnase and barstar separately; this utility fills the internal volume of a protein 

with a user-specified number of spheres (pseudoatoms) that are placed and sized to best 

replicate the protein’s electron density envelope. The number of pseudoatoms applied to each 

protein was determined on the basis of the resulting model’s ability to reproduce the 

electrostatic potential of its corresponding all-atom model. Specifically, the effective charge 

method (ECM) program (9) was used to derive effective charges for the placed pseudoatoms 

that, when expressed as a sum of Debye-Hückel potentials, best reproduced the all-atom 

potential in a 3 Å-thick layer around the protein structure. As expected, the greater the number 

of pseudoatoms (and, therefore, effective charges) in the model, the greater the ability to 
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accurately reproduce the computed electrostatic potential of the all-atom model. Empirically, 

we determined that a ratio of 3 pseudoatoms for every 10 residues was sufficient to give an 

average error of less than 10% in the computed potential (Fig. S1); this criterion also produced 

pseudoatomic models that reflect reasonably well the overall shapes of the proteins (see Fig. 1 

of the main text.) The radii of the pseudoatoms generated by the q_pdb utility ranged from ~4.0 

to 5.4 Å. Effective charges were derived separately for each of the barnase mutants; in all cases, 

however, the pseudoatom positions were identical with those of the wild-type barnase 

pseudoatomic model.  

 To maintain each model’s shape during simulation, nearby pseudoatom pairs were joined to 

each other via flexible harmonic bonds, with the energy expressed by: 

  (1) 

where Ebond is the total bonded energy of the model, Kr is the bond force constant (arbitrarily set 

here to 20 kcal/mol/Å2), and r and r0

 The bond energy was the only intramolecular energy term included in the simulations. 

Intramolecular electrostatic interactions were omitted, while intermolecular interactions were 

calculated using the Debye-Hückel equation:  

 are the current and ‘native’ bond lengths, respectively. The 

cutoff distance for deciding which pseudoatoms would be considered ‘bonded’ was adjusted so 

that, on average, three bonds per pseudoatom were formed. For barnase, pseudoatoms within 

10.8 Å of each other were connected via bonds; for barstar, the cutoff was 11.0 Å. In addition to 

visual verification that the models retained their shape, snapshots were taken at 1 ns intervals 

over the course of separate 10 μs simulations of barnase and barstar. Each snapshot was 

subsequently superimposed upon the initial structure and the root mean squared deviation 

(rmsd) of all pseudoatoms was calculated. The averaged rmsd for barnase was 0.56 ± 0.16 Å; for 

barstar, it was 0.93 ± 0.61 Å. 

  (2) EijDH  =  332.08  qi qj  exp (-κ rij) / ε rij  
 

Ebond    =             Kr (r – r0)2 
 

Σ  
bonds 
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where qi and qj are the effective charges on pseudoatoms i and j; κ is the ionic strength; ε is the 

solvent dielectric constant; and rij  

 Following previous work performed by one of us in the context of protein folding 

simulations (10), non-electrostatic intermolecular interactions were calculated using one of two 

models. First, those pseudoatom pairs not involved in close contacts in the complexed state 

were assigned a purely repulsive interaction: 

is the center-to-center distance between the i’th and j’th 

pseudoatoms during simulation. No cutoff was applied to electrostatic interactions during the 

simulations.  

  (3) 

where ε is set to 0.1 kcal/mol, σ is set to 6.0 Å (1.0 Å less than the shortest distance between a 

‘Gō’ pair [11] of pseudoatoms; see below) and rij

  (4) 

 is  again the distance between i’th and j’th 

pseudoatoms during simulation. Second, those pseudoatom pairs involved in close contacts in 

the complexed state were assigned a very weakly favorable Lennard-Jones-type energy function:    

where ε is the energy well depth of the potential (set to 0.1 kcal/mol), σij is the distance between 

the two pseudoatoms in the structure of the native complex, and rij

Eijnonnative  =  ε  (σ12 / rij12) 

 is the distance between the 

i’th and j’th pseudoatoms during simulation. Here, as in our previous work (12), a ‘close 

contact’ is defined as being two non-hydrogen atoms within 5.5 Å of each other in the all-atom 

model of the native complex; each such contact of atom pairs was converted into a ‘contact’ of 

pseudoatom pairs by assigning each atom to its nearest pseudoatom. Each pair of pseudoatoms 

involved in a contact was counted at most once; defined in this manner, we obtained a total of 

34 native (Gō) contacts in the pseudoatomic model of the barnase-barstar complex. The well-

depth, ε, assigned to these pseudoatom-pseudoatom interactions was deliberately kept small so 

that a double-counting of the driving force for complexation did not occur in the simulations: in 

line with previous work, the primary driving force for the barnase-barstar association in the 

simulations is assumed to be provided by attractive electrostatic interactions (2). In effect, 

 

Eijnative  =  ε [ 5 (σij12 / rij12)  –  6 (σij10 / rij10) ] 
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therefore, the Gō contacts serve only to provide a convenient measure of the extent to which the 

simulated barnase-barstar interaction during a trajectory resembles the native complex (see 

“Reaction criteria”).  

Brownian dynamics simulation protocol 

As in our previous work (12), all Brownian dynamics simulations were conducted using in-

house code implementing the Ermak-McCammon algorithm (13): 

  (5) 

where r i(t) is the position vector of the i’th pseudoatom at time t; Δt is the timestep; Dij is the 

i’th, j’th 3 × 3 submatrix of the diffusion tensor D; F j  is the total force acting on the j’th 

pseudoatom; kB is Boltzman’s constant; T is the temperature in Kelvin (298 K)  and R i

 

 is the 

stochastic displacement of the i’th pseudoatom. To incorporate hydrodynamic interactions (HI), 

the elements of the diffusion tensor were calculated using the equations of Rotne & Prager and 

Yamakawa (14,15) with their extensions for pseudoatoms of unequal size (16,17):  

      

   

 

where I is a unit 3 × 3 matrix, σi and σj are the hydrodynamic radii of the i’th and j’th 

pseudoatoms, rij is the distance between the i’th and j’th pseudoatoms, and r ij

ri(t + Δt)  =  ri(t)  +      Dij Fj Δt / kBT  +  Ri 

 is the connecting 

vector. The radii assigned to the pseudoatoms by the q_pdb utility (~4.0 to 5.4 Å) were adjusted 

to reproduce the translational and rotational diffusion coefficients predicted for the 

corresponding all-atom protein models by the hydrodynamics program HYDROPRO (18,19). 

HYDROPRO’s predictions for the diffusion coefficients of wild-type barnase, barstar and the 

barnase-barstar complex are reported in Table S1. A number of 10 μs BD simulations of each 

pseudoatomic model were performed, with the resulting translational and rotational diffusion 

 
Σ 

     j 

Dii = (kBT/6πηsσi) I  

Dij = (kBT/8πηs) (1/rij) 

  × { [ 1 + (σi2+σj2)/3r2ij ] I + [ 1 – (σi2+σj2)/r2ij ] (rijrij/r2ij) } 

  or × [ rij/(σi+σj) ] { [ 8/3 – 3rij/2(σi+σj) ] I + [ rij/2(σi+σj) ] (rijrij/r2ij) } 

(6) 

 

for rij ≥ (σi+σj) 

for rij < (σi+σj) 
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coefficients being calculated as described in our previous work (12). The radii were increased in 

0.1 Å increments until satisfactory agreement with HYDROPRO’s predictions was obtained; this 

was achieved when each of q_pdb’s assigned pseudoatomic radii were increased by 3.5 Å to ~7.5 

to 8.9 Å. Notably, the hydrodynamic radii obtained from the independent simulations of 

barnase and barstar also accurately captured the HYDROPRO-predicted diffusion coefficients of 

the barnase-barstar complex (see Table S1).    

 We performed two basic types of BD simulations. In the first, we included intramolecular 

hydrodynamic interactions but excluded intermolecular hydrodynamic interactions. This 

requires setting all elements of the diffusion tensor that involve pseudoatoms on different 

molecules to zero; in effect, therefore, the complete 3N × 3N matrix of the two-protein system 

reduces to two smaller 3N × 3N matrices: one with N = 33 for barnase and another with N = 27 

for barstar. In the second type of simulations we included all intramolecular and intermolecular 

hydrodynamic interactions; in such a case the entire 3N × 3N matrix (where N = 33 + 27 = 60) is 

required. In principle, a third set of simulations could have been performed in which all 

intramolecular and intermolecular hydrodynamic interactions are set to zero (this is known as a 

‘free draining’ model). We did not pursue such simulations, however, because we know from 

our previous study that the translational and rotational diffusion coefficients of flexible protein 

models are drastically underestimated when all hydrodynamic interactions are omitted (12). 

Furthermore, the magnitude of the underestimation of the translational diffusion coefficient is 

worse by several-fold than it is for rotational diffusion coefficients: in general, therefore, 

experimental translational and rotational diffusion coefficients cannot be replicated 

simultaneously in free draining (no HI) simulations of flexible models.    

 As in our previous work (12), we followed the standard approach of computing the 

correlated random displacements required in the Ermak-McCammon algorithm by performing 

a Cholesky decomposition of the diffusion tensor. Routines for calculating the diffusion tensor 

and its Cholesky decomposition were modified from those given by Allen and Tildesley (20). In 

all BD simulations the timestep was set to 250 fs and the elements of the diffusion tensor and its 

decomposition were recomputed every 100 simulation steps (i.e. every 25 ps).  
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Calculation of association rate constants 

As in previous all-atom BD studies (e.g., 21–25), association rate constants were calculated by 

analyzing the results of a series of BD simulations with the Northrup-Allison-McCammon 

method (21). In this method, each BD simulation begins with the two proteins positioned in 

random relative orientations at a center-to-center separation distance, b. The trajectory is 

continued until the two proteins either exceed a specified separation distance, c (where c >> b), 

or satisfy the reaction criteria used to define formation of a complex (see below). Following 

others who have simulated the barnase-barstar association reaction (22,24,25), we set b and c to 

100 Å and 500 Å respectively. The reaction rate constant k is then derived using the fraction of 

all simulated trajectories, β, that satisfy the reaction criteria using: 

  (7) 

where k(b) and k(c) are, respectively, the rate constants for two spheres achieving relative 

separations of b and c; in the present case, both b and c are sufficiently large that these rate 

constants are given simply by the Smoluchowski result: k(x) = 4πDx, where D is the relative 

translational diffusion coefficient, i.e. the sum of the two proteins’ translational diffusion 

coefficients. HYDROPRO’s estimate of the relative translational diffusion coefficient of barnase 

and barstar monomers is 2.672 × 10-2 Å2

 In order to obtain statistically robust estimates of association rate constants it was necessary 

to compute a large number of trajectories: from 50,000 to 250,000 (see Table S2). The complete 

set of simulations required approximately 11 weeks running on ten 8-core intel CPUs.  

/ps. The term β represents the number of simulations 

that satisfied the reaction criteria (see below). 

Reaction criteria 

The Gō-like model (11) used to describe non-electrostatic intermolecular interactions provides a 

natural way to identify successful reactions. The extent of the encounter, if any, is quantified 

throughout the simulations in terms of the structure (order) parameter ‘Q’ (see, e.g. refs. 26 & 

27), which is defined as the number of intermolecular Gō contacts formed at a given point in the 

k = k(b) × β / [ 1 – (1 – β) × k(b)/k(c)] 
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simulation divided by the total number of contacts – 34 – that would be found in the fully 

complexed state; Q therefore varies between 0 and 1. During each simulation trajectory the 

highest value of Q achieved is recorded; β is then calculated by counting all trajectories in which 

the highest attained value of Q satisfies or exceeds a given threshold value, Qrxn

ADDITIONAL RESULTS  

. It is to be noted 

that although the terminology used in our method is borrowed from the protein folding 

community, it is conceptually equivalent with the approach used in previous BD simulations of 

protein-protein association events (e.g., 22): in both cases, successful associations are defined by 

the formation of some fraction of the residue-residue interactions found in the structure of the 

native complex. 

Additional simulations of the wild type barnase and barstar association were performed with 

the ionic strength set to 500 mM. For these simulations, the same pseudoatomic models 

employed in the 50 mM simulations were again used but with the effective charges recalculated 

to fit PB electrostatic potentials calculated at 500 mM; all other features of the simulations, 

including the choice of Qrxn, were identical with those used in the 50 mM simulations. The 

experimental association rate constant (2) of wild type barnase and barstar is decreased by ~20-

fold when the ionic strength of the solution is increased from 50 mM to 500 mM (i.e. from 2.86 × 

108 M-1 s-1 to 0.14 × 108 M-1 s-1). In simulations performed without intermolecular HI, we find that 

the association rate constant decreases by a factor of 2 (i.e. from from 2.77 × 108 M-1 s-1 to 1.36 × 

108 M-1 s-1); in simulations performed with HI, we again find that the association rate constant 

decreases by a factor of 2 (i.e. from 2.54 × 108 M-1 s-1 to 1.23 × 108 M-1 s-1). Clearly, therefore, in 

terms of reproducing the effects of increasing the ionic strength of the solution, the simulations 

are in only qualitative agreement with experiment. One possible contributor to the poor 

quantitative agreement at 500 mM may be the reduced ability of the effective charges to 

reproduce the PB-computed electrostatic potential: for barnase, the error in the potential 

computed from the effective charges was 18.0% at 500 mM (vs. 6.5% at 50 mM), whereas for 

barstar, the error was 13.0% (vs. 3.0% at 50 mM). While it might be thought that more 

structurally detailed models would produce better results, it is important to note that an 
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underestimation of the screening effects of salt appears to be a consistent feature of the effective 

charge approach: in Gabdoulline and Wade’s original study of the barnase-barstar system (22), 

for example, the computed rate constant for association in 500 mM was found to be only ~3-fold 

lower than that obtained at 50 mM. It is possible, therefore, that a quantitative reproduction of 

the effects of increasing ionic strength might only be achieved with a simulation model that 

explicitly includes the dissolved salt ions. 
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Figure S1  The error in the computed electrostatic potential due to the effective charges of the 
pseudoatomic models plotted versus the number of pseudoatoms in the model.  Errors for 
barnase mutants are similar to those shown above: for 33-pseudoatom models the percent 
errors were 6.5%, 5.4%, 7.9%, and 8.7% for the wild-type, E60A, R87A and R59A mutants 
respectively. 
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Figure S2 Association rate constants plotted v. Qrxn. Horizontal dashed lines represent 
experimental values and are color-coordinated, with the exception of wild-type (yellow 
circles coupled with a black dashed line). The association rate constants decrease with 
increasing stringency (i.e. increasing Qrxn

 

) in all simulations. Interestingly, however, the rate 
of decrease is significantly greater in simulations with intermolecular HI.      
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Table S1  Translational and Rotational Diffusion Coefficients: Comparison of HYDROPRO’s 

predictions to the results of BD simulations (units in 10-2 Å2 ps-1 and 10-2 ns-1

Protein 

, respectively) 

# Res 
Pseudo 
Atoms 

HydroPro 
Dtrans 

Simulated 
Dtrans  

100% × 
Sim/HPro 

HydroPro    
Drot 

Simulated 
Drot  

100% × 
Sim/HPro 

Barstar 89 27 1.40 1.41 100.8% 3.27 3.47 106.1% 

Barnase 110 33 1.28 1.31 102.4% 2.45 2.44 99.9% 

Barnase-Barstar 199 60 1.04 1.08 103.2% 1.33 1.28 96.6% 

  

 

 

Table S2  Numbers of trajectories used to compute association rate constants 

 # Sims          
w/o Inter HI 

β              
w/o Inter HI 

# Sims            
w/ Inter HI 

β                
w/ Inter HI 

wt 50,000 0.011 50,000 0.010 

E60A 50,000 0.041 50,000 0.039 

R87A 100,000 0.0025 250,000 0.0028 

R59A 100,000 0.0015 250,000 0.0013 

wt – 500mM 50,000 0.0054 100,000 0.0049 
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