SUPPLEMENTAL MATERIAL

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1. Domain structure of Stbd1. The architecture of Stbd1 based on primary sequence is indicated, with the N-terminal hydrophobic segment, a putative leucine zipper and the N-terminal CBM20 domain. Shown also is W293, a residue conserved throughout the Stbd1 family and also present in the laforin CBM20 domain. The truncated forms of Stbd1 shown were identified in a yeast two-hybrid screen using a portion of Stbd1 itself as bait; the relative β -galactosidase activities are indicated alongside the catch.

Supplemental Figure 2. Sequence alignment of mammalian Stbd1s. Sequences were aligned with the Clustal algorithm, with darker shading denoting greater degrees of conservation among species. The orange box indicates the highly conserved hydrophobic N-terminal twenty four residues. The purple box encloses the putative leucine zipper motif. The red box encloses the conserved CBM20 domain.

Supplemental Figure 3. Subcellular localization of endogenous Stbd1 with respect to organelle markers in FL83B cells and Rat1Neo5 fibroblasts. FL83B cells (A) or Rat1Neo5 (B) cells were immunostained with antibodies directed towards mStbd1 (middle panels) and antibodies towards LAMP1, a lysosomal marker (lower left panel), HDEL, as an endoplasmic reticulum marker (middle panel), or against β -tubulin as a microtubule marker (right panel). The upper panels show merges of the images, with Stbd1 (red) and the corresponding organelle marker (green), with nuclei stained with Hoechst (blue). The scale bars are 20 µm.

Supplemental Figure 4. Subcellular localization of Stbd1 over-expressed in COS M9 cells with respect to organelle markers. Cells overexpressing full-length hStbd1 were immunostained with antibodies directed towards mStbd1 (middle

panels) and antibodies towards LAMP1, a lysosomal marker (A, lower panel), towards HDEL, as an endoplasmic reticulum marker (B, lower panel), towards syntaxin 6 as a Golgi marker (C, lower panel) or against β -tubulin as a microtubule marker (D, lower panel). The upper panels show merges of the images, with Stbd1 (red) and the corresponding organelle marker (green), with nuclei stained with Hoechst (blue). The scale bars are 20 µm.

Supplemental Figure 1

Supplemental Figure 2.

Homo sapiens Pan troglodytes Macaca mulatta Cavia porcellus Dipodomys ordii Mus musculus Rattus norvegicus Monodelphis domestica Ochotona princeps Felis catus Dasypus novemcinctus Loxodonta africana Erinaceus europaeus Equus caballus Pteropus vampyrus Bos taurus

Homo sapiens Pan troglodytes Macaca mulatta Cavia porcellus Dipodomys ordii Mus musculus Rattus norvegicus Monodelphis domestica Ochotona princeps Felis catus Dasypus novemcinctus Loxodonta africana Erinaceus europaeus Equus caballus Pteropus vampyrus Bos taurus

Homo sapiens Pan troglodytes Macaca mulatta Cavia porcellus Dipodomys ordii Mus musculus Rattus norvegicus Monodelphis domestica Ochotona princeps Felis catus Dasypus novemcinctus Loxodonta africana Erinaceus europaeus Equus caballus Pteropus vampyrus Bos taurus

Homo sapiens Pan troglodytes Macaca mulatta Cavia porcellus Dipodomys ordii Mus musculus Rattus norvegicus Monodelphis domestica Ochotona princeps Felis catus Dasypus novemcinctus Loxodonta africana Erinaceus europaeus Equus caballus Pteropus vampyrus Bos taurus

Homo sapiens Pan troglodytes Macaca mulatta Cavia porcellus Dipodomys ordii Mus musculus Rattus norvegicus Monodelphis domestica Ochotona princeps Felis catus Dasypus novemcinctus Loxodonta africana Erinaceus europaeus Equus caballus Pteropus vampyrus Bos taurus

_	10	20 3	0 40	. 50	. 60	70
	MGAVWSALLVGGGLAG MGAVWSALLVGGGLAG MGAVWSALLVGGGLAG MGAVWSALLVGGGLAG MGAVWSALLVGGGLAG	ALFVWLLR3GPGD ALFVWLLR3GPGD ALFVWLLR3DPGD ALLVWLLR3GPGD ALFVWLLR3DPG ALFVWLLR3DSGA	G K D G D A E Q E K D A G K D G D A E Q E K D A G K D G D A K Q E K D A G K D G D A K Q E K D A O K D A E P R K G A P P O K D G V A E P P Q K G	PL-GGAAIPG-G PL-GGAAIPG-G PL-GAAAVPG-G RGSGTSPARG-G GEASAPG-G APPGEAAAPGDG	H 0 5 6 5 - 5 6 L 5 P H 0 5 6 5 - 5 6 L 5 P H 0 5 6 5 - 6 6 L 5 P P D 4 6 6 V - 6 6 KWR H 0 0 6 6 6 - 6 6 L 5 P P 6 6 6 6 5 - 6 6 L 5 P	GPSGQELVTKPEH GPSGQELVTKPEH GPSGQELVTKPEH GPCGLQIVIKLEH GLCKQELITKPEH EPSDRELVSKAEH
	MGAVWSALLVGGGLAG MGAVWSALLVGGGLAG MGAVWSALLVGGSLAG MGAVWSALLVGGSLAG MGAVWSALLVGGGLAG MGAFWSALLVGG <mark>S</mark> LAG	ALILWLLR DSGA ALFIWLLR DSGA ALFAWLLR DSPGD ALFVWLLR SGAGD ALFVWLLR DGAGD MLFVWLLR DGPGD	≥GKDGGAEP・LKD GQDAGPRELLPA AGISRGAEPDKEA AGNESDAER・・NA AGNEGGTEQKKDA FGNEGAAEPK・DA	APPGEAAAPGGG ER - APAARG - G PT - REAATPGGR .PQ - GEAAAPG - S .PL - GETAVPG - G .PP - GETAGPG - G	PGGGGS-GGLSP DGGGNSGDPLDP PGGGDS-SGLSP DQGGG-GGPSP DQGGG-GGLSP DQGGG-GCS	EPSDRELVSKAEH KPKQRRISRNYH GPGKRELDSKAEQ VPSRRELVTKAEH GPSRLELVTKPEH VPFGLEPVTKPDH
80	MGAIWSALLVGGGLAG MGAVWSALLVGGGLAG MGAVWSALLVGGGLAG MGAVWSALLVGGGLAG 9 90	ALFVWLLR····G ALFIWLLR····D ALFVWLLR····D ALFVWLLR····D 100	KGQEGDAEPEKDS IGKEGDAEQEKDA IGKEGDAEKEKDV SGKEGNAEQRKDA 110 120	LR - GEAEPLS - G SP - GEAATAG - G (SP - GEAAAAG - G PP - REAVAPG - G 130	DDGGG GLSS DDGGG GGLSP DEGAR GGLSP DDGGGR - GGLSP 140	GPSRPEPIRKAEH GPSKPELVTKPEH GPSTQELVTKPEY GPSAKPVIIGYEH 150
	QESNGHLISKTKDLG QESNGHSISKTKDLG QESNGHLISETK QESNGHLISASKGLD RESNGHLISESKDLG	NLQAASWRLQN NLQAASWRLQN NLQAASWRLQN NLQEAMCAQKN NLPEAQR··LQ	PS REVCDNSRE PS REVCDNSRE LC GADGNKTR NV GADWVNARE	HVLSGQFPDTEA HVSSGQFPDTEA HCPAAQILDTH1 FVPVGKIPDTHS	PATSETSNSRSH SATSETSNSRSY LAASETGNSAGY RAD	SEVSRNESLESPM SEVLRNESLKSPM NEASENESLESHV SEALRNKSLESHG SEAARNQSPGSHG
L H Y L L L	RESNGHLISESKDLG- QESNGCLVSESKSS- QESNGSLISETRDLG- QESNGCLVSETKGHG- QESNGCLISETKGLG- QESNGCLISETKGLG-		N V • • G • • • • NARE SSTQNLNCLRPG AT • • GG VHTG SQ PSG KDG DCD SSR PSG KNG NCDNSR PSG ED SD CDNSR	VVPVGKVPDTHS QVYSSQMLKMEF PVPSAN HVPSGQFPDTES HVPSGQLPDTES HVPSGQSPDTKS	8 R AN P	ISETSRNOSPESRV ISEVLNSES GSHSGSQSLESPR /SAVSRNERLQSPL /SEVSGNES 'SDVSSNVSLDPK.
	QGSNGCLVSETKESG QESNGCLISETKGPG QESNGCLVSEPSGPG QESNGCLVSETKGP 30 170	- NWQEAVWRQON - SLQAAACRRO - NAHEAAWRLOS - DLPGAAWRQOS 180	PTGENGNCDOSRE KDGDCVSPR PSGEGGDCGSSRE PSGEAGNPDSSR 190 200	YTPSRWLPDIGS HVPSGQFPETES HVPSGWFPDKES /HVPSGPFPDTES 210	TAASEASNSRDY LTTSETGHSKGY LATSATGNSKSY LTTSETGNS 220	'PNVSGNESHESS 'SRNEREE 'SEVSRNESCES DISRHESLGSPM 230
G G G E G	EWGFOKGOEISAKAA EWGFOKGOEISAKAA EWGFOKGOEISAKAA EKKFOKGOEIPAKAA ERSFOKGOMTPASAA EWRLPKGOETAVKVAG	TCFAEKLPSSNLLK TCFAEKLPSSNLLK TCFAEKLPSSNLFM TCFADKLPFNSPPV TCFGKKLSSSDLPV SVAAKLPSSSLLV	NRAKEEMSLSDLI NRAKEEMSLSHLI DRAKEEASLSHLI DRAKKGN-QTQLI DRVG-VS-HAQLI DRAKAVS-QDQ-	NSQDRVDHEEWEN NSQDRVDHEEWEN NSQDRVDHKEWEN DTQDPAGQEDWEN DSQAPADQEDWEN	AVPRHSSWGDVGV AVSRHSSWGDVGV AVSRHSSWGDVGV AVSRHSSWGDVGL /VSRHSSWGDVGL	/GGSLKAPVLNL /GGSLKAPVLNL /GGSLKAPVLSL .GGNLEVSGVNL .GGRIESSGLNV
G G A	EWRLPKGHETAVKVAG LEPSLPTAN EWRFQHEREVLAKAG EWGFQKGQETLAKAAF FQKGQETSAKAAT	SVAEKLPSSSPLM VHSSGKFPSDNSFM QQLPSSKTPV PCFAEKLYSSNLVV TCFAGKLPSSNLLM	DRAEAAS - LAQS DKPEEQVRALQVI DSIEVGV - TQLI DRGKEVS - LAELS DKAKEVG - LAQLI	SQDEDDEDWEN	/VSRHSSWG <mark>S</mark> VGL /VPRHSLWRDAD /VSRHSSWGDIGL /VSRHSSWGDVGL /VSRHSSWGDVGL	GGSLEASRLSL GKTSEPSHSGVSI GGNLEQG GGGLEAPGLSP SGSLEAPVLGP -
- - - 22	EWGLOKGHKTPVKAAT RGFOKGOETPAKAAT HIRFHKRODTPAKAAF ERGLOKGOETPSKAVF 10 250	CFAKKLPSSNMLL CFAGKLPSSNLVT YFVGKLPSSNLLI CLAEKFPSSNLLL 260	DRGEEEALI DRAKEDLI DRVKEEVSRAQLI GRAKEVS-PAEPI 270 280	RHSADSDDWE DHQTPADHEDWEN DSQDMADQEDWEN DSQTRANHEDWEN 290	VSRHSSWODIGL VSRHSSWGDVGL VSRHSSWGDIGL VSRHSSWGDVGL 300	GDSPEAFMLNP GGSLKAPVLNP SGSPESPTLSP GDGLGSPVLSS 310
	- NQGMDNGRSTLVEAF - NQGMDNGRSTLVEAF - SPEMHDNRSSLVEAF - SQGMDCDN-TCVELF - NQRMDCDN-TCVELF - NQRMDDSTNSLVGG - NQGMDESRNSLVGG - NQGMDESRNSLVGG	GQQVHGKMERVAV GQQVHGKMERVAV DQQVHGKTERVAV DWEVDGKRKSAQ GWEADQKVR	MPAG SQ DVSVRFQ MPAG SQ DVSVRFQ VSSESK DVSVRFQ - SSD SQ DVSVRFQ - SSL KPQ DVSIQFQ - SVKPRDVSIQFQ VAAVSQ DVNVQFQ	EVHYVTSTDVQFI IVHYVTSTDVQFI IVHYTSTDVQFI IVHYTSTDVQFI IVHYTSTGAQFL IVHYTNTDVQFI IVHYSTSTDVQFI IVHYVTMSDASLV	AVTGDHECLGRW AVTGDHECLGRW AVTGDHEYLGRW AVTGDHESLGGW AVTGDHESLGGW AVTGDHESLGGW AVTGDHESLGGW	NTYIPLHYNKDGF NTYIPLHCNKDGF NTYIPLHYNKDGF DTYIPLHHKDGI KTYIPLHYKDGI NTYIPLHYCKDGL NTYIPLHYCKDGL HSYIPLQCGKDWF
	OGMD CGRSTLMEP N GGMD CGRSTLMEP N GGMD GGRSSAAEAF S GGMD YGRSVLVES H QGMN SGRSTLEEAF N QGMD YGRSTLVAAF N QGLD YGRSTLVAAF K QGKDWD RSMLVAAF 10 320	0 READ VKPGRVVA 6 QEMD VKRKKGVA 6 QEVNIKTEKVIS 10 REVD VKTKKVVE 10 REVD VKTKKVVE 10 QEMD VKQKRV 10 QEKE	ASA E A D UVSIRFO WISSESO UVSIRFO ISSESO UVNVKFO VFPEPO UVSITFO MISS-A D UVNVTFO SRUVSVRFO MISSESO UVSVRFO C R UVSVRFO C R UVSVRFO C R UVSVRFO 	IVHYVTSTDVEFI IVHYTSTGGDFI IVHYTTSTGEDFI IVHYTSTGEDFI IVHYTSTGEVOFI IVHYTSTGVDFI IVHYTSTGVDFI IVHYTSTGVDFI IVHYTSAGVDFI	AVTGDHEHLGRW AVTGDHESLGRW AVTGDHESLGRW ATGDHESLGRW ATGDHESLGRW AVTGDHESLGRW AVTGDHESLGRW AVTGDHESLGRW	NTYIPLHCNKDGL NTYIPLQYSKDGF NTYIPLQYSKDGF NTYIPLQYSKDGF NTYIPLQGSKDGF NTYIPLQGSKDGF KSYIPLQGSRDGF
	P L H Y N K D G F WS H S I F P L H C N K D G F WS H S I F P L H H K D G L WS H S V L P L H H K D G L WS H S V L P L H Y K K D G L WS H S V F P L H Y C K D G L WS H S V F P L Y C K D G L WS H S V F P L Q C G K D W F WS R S V P P L H C N K D G L WS H S V L P L Q Y S K D G F WS H S V S P L Q Y S K D G F WS H S V S	PADTVVEWKFVLV PADTVVEWKFVLV PADTVVEWKFVLV PADTVVEWKFVLV PADTVVEWKFVLV PADTVVEWKFVLV PADTVVEWKFVLV PADTVVEWKFVVV PADTVVEWKFVVV PADTVVEWKFVVV PADTVVEWKFVVV	ENGGVTRWEECSI ENGGVTRWEECSI ENGGVARWEECSI ENGKVTRWEECSI ENGKVTRWEECSI ENKEVTRWEECSI ENGSIIRWEECSI ENGGVTRWEECSI DNGKITRWEECSI ENGEVIRWEECSI ENGEVIRWEECSI	NRFLETGHEDKVV NRFLETGHEDKVV NRFLUTGHEDKVV NRFLUTGHEDKVV NRFLUTGHEDKVV NRFLUTGHEDKVV NRFLETGHEDKVV NRFLETGREDKVV NRFLETGLEDKVV NRFLETGLEDKVV	/HANUWGIH /HANUWGIH /HANUWGIH /HANUWGVH /HANUWGVH /HGNUWGIH /HGNUWGIH /YKNUWGCH /RKNUWGIP /QENUWGIH /QENUWGIH	
1	PLQYGKDGLWSHSVSI PLQGSKDGFWSHSVSI PLQYSKDGFWSRSVYI PLQCSRDGFWSRSVSI	_ PAGAVVQWKFVVV _ PADTVVEWKFVVV _ PADTMVEWKFVVV _ PADTVVEWKFVVV	ENGGITRWEECSI ENGEVTRWEECSI ENGKVTRWEECSI ENGEVARWEECSI	NRFLDTGHEDKEN NRFLETGHEDKVV NRLLETGYEDKVV NRFLETGHEDKVV	/HKMWGIH /HKMWGIP /HKSWGIH /HRMWGIH	

Suplemental Figure 3.

В

Supplemental Figure 4.

