Supplemental Material for

TUMOR SUPPRESSOR RAS-ASSOCIATION DOMAIN FAMILY 5 (RASSF5/NORE1) MEDIATES DEATH RECEPTOR LIGAND-INDUCED APOPTOSIS

Jikyoung Park^{1,5}, Soo Im Kang^{1,5}, Sun-Young Lee², Xian F. Zhang³, Myoung Shin Kim¹, Lisa F. Beers^{1,6}, Dae-Sik Lim⁴, Joseph Avruch³, Ho-Shik Kim² and Sean Bong Lee^{1,*}

¹Genetics of Development and Disease Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892. ²Department of Biochemistry, College of Medicine, The Catholic University of Korea,

Seoul 137-701, Korea.

³Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114. ⁴National Research Laboratory of Molecular Genetics, Department of Biological Sciences, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.

⁵These authors contributed equally to this work.

⁶Present address: College of Pharmacy, The University of Iowa, Iowa City, IA 52242. Running Head: Rassf5 mediates TNF-α induced apoptosis.

***To whom correspondence should be addressed**: Genetics of Development and Disease Branch, 9000 Rockville Pike, Building 10, 9D11, Bethesda, MD 20892. Phone: (301) 496-9739; Fax: (301) 480-0638; E-mail: <u>seanL@intra.niddk.nih.gov</u>.

Footnote: This research was supported by the Intramural Research Program of the NIH, NIDDK (S.B.L.).

Competing interests statement: The authors declare no competing interests.

Supplemental Figure Legend

Supplement Fig. 1. siRNA knockdown of *RASSF5*. U2OS cells were transfected with either control or *RASSF5* siRNA using Lipofectamine 2000 (Invitrogen), and total RNA isolated at 48 hrs post-transfection was analyzed for *RASSF5* and *GAPDH* transcripts by TaqMan RT-PCR analysis. (Applied Biosystems, Foster City, CA). Data were analyzed by comparative Ct method using *GAPDH* as an endogenous control and the *RASSF5* transcript levels were expressed as relative to the *RASSF5* transcript levels in untransfected U2OS cells (set to 1).

Supplement Fig. 2. U2OS cells cotransfected with Flag-RASSF5 and MST1 were immunoprecipited with either anti-FLAG (M2, Sigma) or anti-MST1 (Cell Signaling) antibodies and analyzed by Western blotting. Anti-IKK and anti-p65 (NFkB subunit) antibodies (Cell Signaling) were used as negative controls.

Supplement Fig. 3. U2OS cells cotransfected with Flag-RASSF5 and TNF-R1 were immunoprecipited with anti-TNF-R1 antibody (Cell Signaling) and analyzed by Western blotting using antibodies against RASSF5, MST1, WW45, YAP1 and LATS1.

Supplement Fig. 4. U2OS cells were transfected with control or *MST1*, *WW45*, *LATS1* or *YAP1* siRNA and cell lysates were analyzed by Western blotting with MST1, WW45, LATS1, YAP1 and β -actin antibodies.

Supplement Fig. 5. (**A**) *Rassf5+/+* or *Rassf5-/-* MEFs were treated with varying concentration of TNF-α and cycloheximide (10µg/ml) for 18 hr, and cells were stained with Annexin V and propidium iodide (PI) using Annexin V-FLOUS Staining kit (Roche). Stained cells were analyzed by FACSCalibur (BD Biosciences). A representative result from three independent experiments is shown. The numbers in each quadrant indicates percentage of cells positive for Annexin V, PI or both. Quadrant I: early-apoptosis population (Annexin V+; PI-), **II**: late apoptosis population (Annexin V+; PI+). (**B**) Quantitation of three independent experiments performed as described in (A).

Supplement Fig. 6. (**A**) Total RNAs were isolated from *Rassf5+/+* or *Rassf5-/-* MEFs and expression of FADD, TRADD, TRAF2 or TNF-R1 was analyzed by real-time RT-PCR using TaqMan Probes (Applied Biosystems). Data were analyzed by comparative Ct method using *GAPDH* as an endogenous control and represent results from three independent experiments. (**B**) Cell lysates from U2OS cells transfected with control or *RASSF5* siRNA and *Rassf5+/+* or *Rassf5-/-* MEFs were analyzed by Western blotting with antibodies against TRAF2 (Cell Signaling), TNF-R1 (Cell Signaling) and β-actin.

Supplement Fig. 7. *Rassf5+/+* and *Rassf5-/-* mice were injected via tail vein with TNF- α (20µg/kg in PBS) and livers were dissected at 6 hr. Representative images of the livers are shown.

Supplement Fig. 8. Activation of Mst1 requires Rassf5. (**A**) *Rassf5* wildtype and mutant mice were injected via tail vein with TNF- α (20µg/kg in PBS) and at 6 hrs post-injection, livers were dissected, fixed in formalin and paraffin-embedded. Sectioned livers were then immunostained with anti-MST1 antibody (Bethyl Laboratories) and mounted with DAPI containing mounting medium (Vector Laboratories). Arrowheads indicate cells with nuclear Mst1. Images were taken with confocal LSM 5 Live/Axio Observer.Z1 microscope (Carl Zeiss MicroImaing. Inc). Bar= 20µm. (**B**) Liver extracts from Rassf5 wildtype and mutant mice injected via tail vein with TNF- α (20µg/kg in PBS) were analyzed by Western blotting with anti-phospho-Mst1/2 (Ser183/180) and α -tubulin antibodies.

Supplement Fig. 9. U2OS cells transfected with either control or *RASSF5* siRNA were treated with varying concentration of TNF- α and at indicated times, cell lysates were analyzed for Western blotting with antibodies against, IkB, phospho-IkB, IKK, and phospho-IKK (Cell Signaling). Anti- β -actin was used as loading control.

Supplement Fig. 10. *Rassf5+/+* and *Rassf5-/-* MEFs were treated with different doses of tamoxifen, staurosporine, nocodazole or methyl methanesulfonate (MMS) and cell survival was measured using Cell Counting kit-8 (Dojindo).

Supplement Table 1. Re	e-introduction	of Rassf5	in Rassf5-null	MEFs modestly	enhances
TNF-α induced apoptosis	3.				

	MEFs	Caspase 3 activity
Untransfected	Rassf5 +/+	211260.1 ± 14024.3
	Rassf5 -/-	17335.4 ± 966.9
Empty vector	Rassf5 +/+	254312.4 ± 19999.7
	Rassf5 -/-	15902.7 ± 2030.0
CMV-Rassf5	Rassf5 +/+	278770.0 ± 36473.4
	Rassf5 -/-	23223.7 ± 2880.4

Genotype	Tumor	Cases
<i>Rassf5</i> ^{+/+} (n=21)	Lymphoma Lung adenoma	6/21 2/21
<i>Rassf5</i> ^{+/-} (n=28)	Lymphoma Lung adenoma Hepatic adenoma	8/28 3/28 2/28
<i>Rassf5</i> ^{-/-} (n=28)	Lymphoma Lung adenoma Hepatic adenoma	6/28 3/28 1/28

Supplement Table 2. Spontaneous tumors in Rassf5 mice

n=total number of animals

	IP		
Input	IgG TNFR		
-	-	TNFR	
	-	Rassf5	WB
-	and a	TNFR	WB
		TNFR WW45	WB
		TNFR YAP1	WB
1	-	TNFR	WB

В

A

+ TNF- α (6 hrs)		No TNF-α
Rassf5 -/-	Rassf5 +/+	Rassf5 +/-
1 Alexander		

MST1

Α

Merge

