Supplementary Material for : Bayesian On-line Learning of the Hazard Rate in Change-Point Problems

Robert C. Wilson

Department of Psychology, Green Hall,

Princeton University, Princeton, NJ 08540, USA

Matthew R. Nassar and Joshua I. Gold

Department of Neuroscience, 116 Johnson Pavilion,

University of Pennsylvania, Philadelphia, PA 19104, USA

May 24, 2010

1 Exponential families

The methods used in this paper are particularly useful when the generating distribution comes from the exponential family. These distributions are completely specified in terms of a finite number of sufficient statistics, η , and can be written in the form:

$$
p(\mathbf{x}|\eta) = H(\mathbf{x}) \exp \left(\eta^T \mathbf{U}(\mathbf{x}) - A(\eta) \right) \tag{1}
$$

where $A(\eta)$ is given by

$$
A(\eta) = \log \left\{ \int H(\mathbf{x}) \exp \left(\eta^T \mathbf{U}(\mathbf{x}) \right) d\mathbf{x} \right\}
$$
 (2)

Exponential family distributions are particularly convenient because the conjugate prior is also a member of this family, taking the form

$$
p(\eta|\chi_0, v) = \tilde{H}(\eta) \exp\left(\eta^T \chi_0 - vA(\eta) - \tilde{A}(\chi_0, v)\right)
$$
\n(3)

where χ_0 and v are the prior hyperparameters. Thus, we can write the posterior distribution for run length r_t as

$$
p(\mathbf{x}_{t+1}|\mathbf{x}_{t}^{(r_{t})}) = \int p(\mathbf{x}_{t+1}|\eta)p(\eta|\mathbf{x}_{t}^{r})d\eta
$$

\n
$$
= \frac{\int \prod_{i=t-r_{t}}^{t+1} p(\mathbf{x}_{i}|\eta)p(\eta|\chi_{0},v)d\eta}{\int \prod_{i=t-r_{t}}^{t} p(\mathbf{x}_{i}|\eta)p(\eta|\chi_{0},v)d\eta}
$$

\n
$$
= H(\mathbf{x}_{t+1})\frac{\int \tilde{H}(\eta) \exp(\eta^{T}(\chi_{0} + \sum_{i=t-r_{t}}^{t+1} \mathbf{U}(\mathbf{x}_{i})) - (r_{t} + v + 1)A(\eta)) d\eta}{\int \tilde{H}(\eta) \exp(\eta^{T}(\chi_{0} + \sum_{i=t-r_{t}}^{t} \mathbf{U}(\mathbf{x}_{i})) - (r_{t} + v + 1)A(\eta)) d\eta}
$$
\n(4)

and therefore only have to keep track of a finite number of sufficient statistics; i.e.,

$$
\chi_t = \chi_0 + \sum_{i=t-r_t}^{t+1} \mathbf{U}(\mathbf{x}_i)
$$
\n(5)

and

$$
v_t = v_0 + r_t \tag{6}
$$

for each run length to fully specify the distribution.

2 Update algorithm for general change-point hierarchy

To derive the message-passing algorithm for the most general case, we first must introduce a suitable notation. We define $a_0^{(n)}$ $\binom{n}{0}$ and $b_0^{(n)}$ $\binom{n}{0}$ as the prior parameters of the beta distributions over the hazard rate in the *n*th layer of the hierarchy, and $(a_t^{(n)} - a_0^{(n)})$ $\binom{n}{0}$ and $\left(b_t^{(n)} - b_0^{(n)}\right)$ $\binom{n}{0}$ to describe the number of change-points and non-change-points counted in each layer. We then group these together as vectors

$$
\mathbf{a}_{t} = \left[a_{t}^{(1)}, a_{t}^{(2)}, \dots, a_{t}^{(N-1)} \right] \quad \text{and} \quad \mathbf{b}_{t} = \left[b_{t}^{(1)}, b_{t}^{(2)}, \dots, b_{t}^{(N-1)} \right] \tag{7}
$$

to further simplify the notation. Similarly, we define h_t as

$$
\mathbf{h}_t = \left[h_t^{(1)}, h_t^{(2)}, \dots, h_t^{(N-1)} \right] \tag{8}
$$

But note that it is more convenient not to include $h^{(0)}$ in this vector. In this notation, then, we have

$$
p(\mathbf{x}_{t+1}|\mathbf{x}_{1:t}) = \sum_{r_t} \sum_{\mathbf{a}_t} \sum_{\mathbf{b}_t} p(\mathbf{x}_{t+1}|\mathbf{x}_{1:t}) p(r_t, \mathbf{a}_t, \mathbf{b}_t, \mathbf{x}_{1:t})
$$
(9)

In a similar manner to before we can compute $p(r_t, \mathbf{a}_t, \mathbf{b}_t, \mathbf{x}_{1:t})$ recursively; i.e.,

$$
p(r_t, \mathbf{a}_t, \mathbf{b}_t, \mathbf{x}_{1:t}) = \sum_{r_{t-1}} \sum_{\mathbf{a}_{t-1}} \sum_{\mathbf{b}_{t-1}} p(r_t, r_{t-1}, \mathbf{a}_t, \mathbf{a}_{t-1}, \mathbf{b}_t, \mathbf{b}_{t-1}, \mathbf{x}_{1:t})
$$

\n
$$
= \sum_{r_{t-1}} \sum_{\mathbf{a}_{t-1}} \sum_{\mathbf{b}_{t-1}} p(r_t, \mathbf{a}_t, \mathbf{b}_t, \mathbf{x}_t | r_{t-1}, \mathbf{a}_{t-1}, \mathbf{b}_{t-1}, \mathbf{x}_{1:t-1}) p(r_{t-1}, \mathbf{a}_{t-1}, \mathbf{b}_{t-1}, \mathbf{x}_{1:t-1}) \qquad (10)
$$

\n
$$
= \sum_{r_{t-1}} \sum_{\mathbf{a}_{t-1}} \sum_{\mathbf{b}_{t-1}} p(r_t, \mathbf{a}_t, \mathbf{b}_t | r_{t-1}, \mathbf{a}_{t-1}, \mathbf{b}_{t-1}) p(\mathbf{x}_t | \mathbf{x}_{t-1}^{(r_t)}) p(r_{t-1}, \mathbf{a}_{t-1}, \mathbf{b}_{t-1}, \mathbf{x}_{1:t-1})
$$

To get a handle on the change-point prior, we can write it as the marginal over \mathbf{h}_t , i.e.

$$
p(r_t, \mathbf{a}_t, \mathbf{b}_t | r_{t-1}, \mathbf{a}_{t-1}, \mathbf{b}_{t-1}) = \int p(r_t, \mathbf{a}_t, \mathbf{b}_t | \mathbf{h}_t, r_{t-1}, \mathbf{a}_{t-1}, \mathbf{b}_{t-1}) p(\mathbf{h}_t | r_{t-1}, \mathbf{a}_{t-1}, \mathbf{b}_{t-1}) d\mathbf{h}_t
$$
(11)

where the integral is over the interval [0, 1] in each dimension and

$$
p(\mathbf{h}_t|r_{t-1}, \mathbf{a}_{t-1}, \mathbf{b}_{t-1}) = \prod_{n=1}^{N-1} \frac{\Gamma\left(a_{t-1}^{(n)} + 1\right) \Gamma\left(b_{t-1}^{(n)} + 1\right)}{\Gamma\left(a_{t-1}^{(n)} + b_{t-1}^{(n)} + 1\right)} \left(h_t^{(n)}\right)^{a_{t-1}^{(n)}} \left(1 - h_t^{(n)}\right)^{b_{t-1}^{(n)}} \tag{12}
$$

To understand $p(r_t, \mathbf{a}_t, \mathbf{b}_t | \mathbf{h}_t, r_{t-1}, \mathbf{a}_{t-1}, \mathbf{b}_{t-1})$, we note that there are only 2^{N-1} non-zero entries, corresponding to the number of possibilities arising from allowing each of the N levels of the hierarchy to have a change-point or not. Then, for a particular possibility, i, we define C_i as the set of all levels experiencing a change-point and $\bar{\mathcal{C}}_i$ as the set of levels not experiencing a change-point. Thus we can write

$$
p(r_t, \mathbf{a}_t, \mathbf{b}_t | \mathbf{h}_t, r_{t-1}, \mathbf{a}_{t-1}, \mathbf{b}_{t-1})
$$

=
$$
\sum_{i=1}^{2^N} \delta(r_t - R(r_{t-1}, C_i)) \delta(\mathbf{a}_t - \mathbf{A}(\mathbf{a}_{t-1}, C_i)) \delta(\mathbf{b}_t - \mathbf{B}(\mathbf{b}_{t-1}, C_i)) \prod_{m \in C_i} h_t^{(m)} \prod_{n \in \bar{C}_i} (1 - h_t^{(n)}) \quad (13)
$$

where

$$
R(r_{t-1}, \mathcal{C}_i) = \begin{cases} 0 & \text{if level } N \in \mathcal{C}_i \\ r_{t-1} + 1 & \text{if level } N \notin \mathcal{C}_i \end{cases}
$$
 (14)

$$
A_n(\mathbf{a}_{t-1}, \mathcal{C}_i) = \begin{cases} 0 & \text{if level } n \in \mathcal{C}_i \\ a_{t-1}^{(n)} & \text{if level } n \notin \mathcal{C}_i \text{ and level } n+1 \notin \mathcal{C}_i \\ a_{t-1}^{(n)} + 1 & \text{if level } n \notin \mathcal{C}_i \text{ and level } n+1 \in \mathcal{C}_i \end{cases}
$$
(15)

$$
B_n(\mathbf{b}_{t-1}, \mathcal{C}_i) = \begin{cases} 0 & \text{if level } n \in \mathcal{C}_i \\ b_{t-1}^{(n)} + 1 & \text{if level } n \notin \mathcal{C}_i \text{ and level } n+1 \notin \mathcal{C}_i \\ b_{t-1}^{(n)} & \text{if level } n \notin \mathcal{C}_i \text{ and level } n+1 \in \mathcal{C}_i \end{cases}
$$
(16)

which leads to the following expression for the change-point prior

$$
p(r_t, \mathbf{a}_t, \mathbf{b}_t | r_{t-1}, \mathbf{a}_{t-1}, \mathbf{b}_{t-1})
$$

=
$$
\sum_{i=1}^{2^N} \delta(r_t - R(r_{t-1}, C_i)) \delta(\mathbf{a}_t - \mathbf{A}(\mathbf{a}_{t-1}, C_i)) \delta(\mathbf{b}_t - \mathbf{B}(\mathbf{b}_{t-1}, C_i)) \prod_{m \in C_i} \tilde{h}_t^{(m)} \prod_{n \in \bar{C}_i} (1 - \tilde{h}_t^{(n)}) \tag{17}
$$

where

$$
\tilde{h}_t^{(n)} = \frac{a_{t-1}^{(n)} + 1}{a_{t-1}^{(n)} + b_{t-1}^{(n)} + 2}
$$
\n(18)

Thus we have a (fairly) simple message-passing algorithm for inference and prediction in a changepoint heirarchy.

3 Pseudocode

In the following two boxes we present pseudocode for inferring a constant hazard rate (box 1) and for inference in a three-level change-point hierarchy (box 2).

- 1. Initialise node $\mathcal{N}(r_0, a_0, t = 0)$: $w(r_0 = 0, a_0 = 0, t = 1) = 1$ and nodelist: $\mathcal{L}_{t=0} = \{ \mathcal{N}(0, 0, 0) \}$
- 2. For all other nodes, set initial value of weight to zero, $w(r_t, a_t, t) = 0$
- 3. for each time $t = 1$ to T_{max}
	- 4. Set total weight to zero, $W_{total} = 0$, and initialise nodelist to empty set, $\mathcal{L}_t = \emptyset$
	- 5. for all nodes in nodelist \mathcal{L}_{t-1}
		- 6. Observe data \mathbf{x}_t
		- 7. Compute predictive probability: $\pi(\mathbf{x}_t) = p(\mathbf{x}_t | \mathbf{x}_{t-1}^{(r_{t-1})})$ $\binom{(r_{t-1})}{t-1}$
		- 8. Compute estimate of hazard rate: $\tilde{h}_t = \frac{a_{t-1}+1}{a_{t-1}+b_{t-1}}$ $a_{t-1}+b_{t-1}+2$
		- 9. Send messages to children:

To
$$
\mathcal{N}(r_t = r_{t-1} + 1, a_t = a_{t-1}, t)
$$
: $w(r_t, a_t, t) = (1 - \tilde{h}_{t-1})w(r_{t-1}, a_{t-1}, t-1)\pi(\mathbf{x}_t)$

To
$$
\mathcal{N}(r_t = 0, a_t = a_{t-1} + 1, t)
$$
: $w(r_t, a_t, t) = w(r_t, a_t, t) + \tilde{h}_{t-1}w(r_{t-1}, a_{t-1}, t-1)\pi(\mathbf{x}_t)$

- 10. Add new children to nodelist at time t
- 11. Update $W_{total} = W_{total} + w(r_{t-1}, a_{t-1}, t-1)\pi(x_t)$
- 12. endfor
- 13. Normalize: for nodes in \mathcal{L}_t : $w(r_t, a_t, t) = w(r_t, a_t, t) / W_{total}$; endfor
- 14. Predict: $p(\mathbf{x}_{t+1}|\mathbf{x}_{1:t}) = \sum_{r_t} \sum_{a_t} p(\mathbf{x}_{t+1}|\mathbf{x}_t^{(r_t)})$ $\binom{(r_t)}{t}$ $w(r_t, a_t, t)$
- 15. endfor

Box 1 – Pseudo-code for on-line learning of a constant hazard rate

1. Initialise node $\mathcal{N}(r_0, a_0, b_0, 0)$: $w(r_0 = 0, a_0 = 0, b_0 = 0, t = 0) = 1$ and list: $\mathcal{L}_{t=0} = \{\mathcal{N}(0, 0, 0, 0)\}$ 2. for each time $t = 1$ to T_{max} 3. Initialise new nodelist to empty set, $\mathcal{L}_t = \emptyset$ 4. for all nodes $\in \mathcal{L}_{t-1}$ 5. Observe data \mathbf{x}_t and compute predictive probability: $\pi(\mathbf{x}_t) = p(\mathbf{x}_t | \mathbf{x}_{t-1}^{(r_{t-1})})$ $\binom{(r_{t-1})}{t-1}$ 6. Compute estimate of hazard rate: $\tilde{h}_t^{(1)} = \frac{a_{t-1}+1}{a_{t-1}+b_{t-1}}$ $a_{t-1}+b_{t-1}+2$ 7. Messages to children to update weights by to $\mathcal{N}(r_t = r_{t-1} + 1, a_t = a_{t-1}, b_t = b_{t-1} + 1, t)$: $(1 - \tilde{h}_{t-1}^{(1)})$ $(t_{t-1}^{(1)})(1-h^{(0)})w(r_{t-1}, a_{t-1}, b_{t-1}, t-1)\pi(\mathbf{x}_t)$ to $\mathcal{N}(r_t = 0, a_t = a_{t-1} + 1, b_t = b_{t-1}, t)$: $\tilde{h}_{t-}^{(1)}$ $_{t-1}^{(1)}(1-h^{(0)})w(r_{t-1}, a_{t-1}, b_{t-1}, t-1)\pi(\mathbf{x}_t)$ to $\mathcal{N}(r_t = r_{t-1} + 1, a_t = a_0, b_t = b_0, t)$: $(1 - \tilde{h}_{t-1}^{(1)})$ $_{t-1}^{(1)}$) $h^{(0)}w(r_{t-1}, a_{t-1}, b_{t-1}, t-1)\pi(\mathbf{x}_t)$ to $\mathcal{N}(r_t = 0, a_t = a_0, b_t = b_0 + 1, t)$: $\tilde{h}_{t-1}^{(1)} h^{(0)} w(r_{t-1}, a_{t-1}, b_{t-1}, t-1) \pi(\mathbf{x}_t)$ 8. Add new children to nodelist at time t 9. endfor 10. Prune nodes: $\mathcal{L}_t = \text{prune}(\mathcal{L}_t)$ 11. Normalize: $W_{total} = \sum_{\text{nodes} \in \mathcal{L}_t} w(r_t, a_t, b_t, t)$ for all nodes in \mathcal{L}_t : $w(r_t, a_t, b_t, t) = w(r_t, a_t, b_t, t) / W_{total}$; endfor 13. Predict: $p(\mathbf{x}_{t+1}|\mathbf{x}_{1:t}) = \sum_{r_t} \sum_{a_t} \sum_{b_t} p(\mathbf{x}_{t+1}|\mathbf{x}_t^{(r_t)})$ $_{t}^{(r_{t})})w(r_{t}, a_{t}, b_{t}, t)$ 14. endfor Box 2 – Pseudo-code for on-line learning of the hazard rate in a three-level change-point hierarchy.