
Supplementary Material for : Bayesian On-line

Learning of the Hazard Rate in Change-Point

Problems

Robert C. Wilson

Department of Psychology, Green Hall,

Princeton University, Princeton, NJ 08540, USA

Matthew R. Nassar and Joshua I. Gold

Department of Neuroscience, 116 Johnson Pavilion,

University of Pennsylvania, Philadelphia, PA 19104, USA

May 24, 2010

1

1 Exponential families

The methods used in this paper are particularly useful when the generating distribution comes from

the exponential family. These distributions are completely specified in terms of a finite number of

sufficient statistics, η, and can be written in the form:

p(x|η) = H(x) exp
(
ηTU(x)− A(η)

)
(1)

where A(η) is given by

A(η) = log

{∫
H(x) exp

(
ηTU(x)

)
dx

}
(2)

Exponential family distributions are particularly convenient because the conjugate prior is also a

member of this family, taking the form

p(η|χ0, v) = H̃(η) exp
(
ηTχ0 − vA(η)− Ã(χ0, v)

)
(3)

where χ0 and v are the prior hyperparameters. Thus, we can write the posterior distribution for run

length rt as

p(xt+1|x(rt)
t) =

∫
p(xt+1|η)p(η|xr

t)dη

=

∫ ∏t+1
i=t−rt

p(xi|η)p(η|χ0, v)dη∫ ∏t
i=t−rt

p(xi|η)p(η|χ0, v)dη

= H(xt+1)

∫
H̃(η) exp

(
ηT
(
χ0 +

∑t+1
i=t−rt

U(xi)
)
− (rt + v + 1)A(η)

)
dη∫

H̃(η) exp
(
ηT
(
χ0 +

∑t
i=t−rt

U(xi)
)
− (rt + v + 1)A(η)

)
dη

(4)

and therefore only have to keep track of a finite number of sufficient statistics; i.e.,

χt = χ0 +
t+1∑

i=t−rt

U(xi) (5)

and

vt = v0 + rt (6)

for each run length to fully specify the distribution.

2

2 Update algorithm for general change-point hierarchy

To derive the message-passing algorithm for the most general case, we first must introduce a suitable

notation. We define a
(n)
0 and b

(n)
0 as the prior parameters of the beta distributions over the hazard

rate in the nth layer of the hierarchy, and (a
(n)
t − a

(n)
0) and (b

(n)
t − b

(n)
0) to describe the number of

change-points and non-change-points counted in each layer. We then group these together as vectors

at =
[
a

(1)
t , a

(2)
t , ..., a

(N−1)
t

]
and bt =

[
b

(1)
t , b

(2)
t , ..., b

(N−1)
t

]
(7)

to further simplify the notation. Similarly, we define ht as

ht =
[
h

(1)
t , h

(2)
t , ..., h

(N−1)
t

]
(8)

But note that it is more convenient not to include h(0) in this vector. In this notation, then, we have

p(xt+1|x1:t) =
∑
rt

∑
at

∑
bt

p(xt+1|x1:t)p(rt, at,bt,x1:t) (9)

In a similar manner to before we can compute p(rt, at,bt,x1:t) recursively; i.e.,

p(rt, at,bt,x1:t) =
∑
rt−1

∑
at−1

∑
bt−1

p(rt, rt−1, at, at−1,bt,bt−1,x1:t)

=
∑
rt−1

∑
at−1

∑
bt−1

p(rt, at,bt,xt|rt−1, at−1,bt−1,x1:t−1)p(rt−1, at−1,bt−1,x1:t−1)

=
∑
rt−1

∑
at−1

∑
bt−1

p(rt, at,bt|rt−1, at−1,bt−1)p(xt|x(rt)
t−1)p(rt−1, at−1,bt−1,x1:t−1)

(10)

To get a handle on the change-point prior, we can write it as the marginal over ht, i.e.

p(rt, at,bt|rt−1, at−1,bt−1) =

∫
p(rt, at,bt|ht, rt−1, at−1,bt−1)p(ht|rt−1, at−1,bt−1)dht (11)

where the integral is over the interval [0, 1] in each dimension and

p(ht|rt−1, at−1,bt−1) =
N−1∏
n=1

Γ
(
a

(n)
t−1 + 1

)
Γ
(
b

(n)
t−1 + 1

)
Γ
(
a

(n)
t−1 + b

(n)
t−1 + 1

) (
h

(n)
t

)a
(n)
t−1
(

1− h(n)
t

)b
(n)
t−1

(12)

3

To understand p(rt, at,bt|ht, rt−1, at−1,bt−1), we note that there are only 2N−1 non-zero entries,

corresponding to the number of possibilities arising from allowing each of the N levels of the hierarchy

to have a change-point or not. Then, for a particular possibility, i, we define Ci as the set of all levels

experiencing a change-point and C̄i as the set of levels not experiencing a change-point. Thus we can

write

p(rt, at,bt|ht, rt−1, at−1,bt−1)

=
2N∑
i=1

δ(rt −R(rt−1, Ci))δ(at −A(at−1, Ci))δ(bt −B(bt−1, Ci))
∏

m∈Ci

h
(m)
t

∏
n∈C̄i

(1− h(n)
t) (13)

where

R(rt−1, Ci) =


0 if level N ∈ Ci

rt−1 + 1 if level N /∈ Ci
(14)

An(at−1, Ci) =


0 if level n ∈ Ci

a
(n)
t−1 if level n /∈ Ci and level n+ 1 /∈ Ci

a
(n)
t−1 + 1 if level n /∈ Ci and level n+ 1 ∈ Ci

(15)

Bn(bt−1, Ci) =


0 if level n ∈ Ci

b
(n)
t−1 + 1 if level n /∈ Ci and level n+ 1 /∈ Ci

b
(n)
t−1 if level n /∈ Ci and level n+ 1 ∈ Ci

(16)

which leads to the following expression for the change-point prior

p(rt, at,bt|rt−1, at−1,bt−1)

=
2N∑
i=1

δ(rt −R(rt−1, Ci))δ(at −A(at−1, Ci))δ(bt −B(bt−1, Ci))
∏

m∈Ci

h̃
(m)
t

∏
n∈C̄i

(1− h̃(n)
t) (17)

where

h̃
(n)
t =

a
(n)
t−1 + 1

a
(n)
t−1 + b

(n)
t−1 + 2

(18)

4

Thus we have a (fairly) simple message-passing algorithm for inference and prediction in a change-

point heirarchy.

3 Pseudocode

In the following two boxes we present pseudocode for inferring a constant hazard rate (box 1) and

for inference in a three-level change-point hierarchy (box 2).

5

1. Initialise node N (r0, a0, t = 0): w(r0 = 0, a0 = 0, t = 1) = 1 and nodelist: Lt=0 = {N (0, 0, 0)}

2. For all other nodes, set initial value of weight to zero, w(rt, at, t) = 0

3. for each time t = 1 to Tmax

4. Set total weight to zero, Wtotal = 0, and initialise nodelist to empty set, Lt = ∅

5. for all nodes in nodelist Lt−1

6. Observe data xt

7. Compute predictive probability: π(xt) = p(xt|x(rt−1)
t−1)

8. Compute estimate of hazard rate: h̃t = at−1+1
at−1+bt−1+2

9. Send messages to children:

To N (rt = rt−1 + 1, at = at−1, t): w(rt, at, t) = (1− h̃t−1)w(rt−1, at−1, t− 1)π(xt)

To N (rt = 0, at = at−1 + 1, t): w(rt, at, t) = w(rt, at, t) + h̃t−1w(rt−1, at−1, t− 1)π(xt)

10. Add new children to nodelist at time t

11. Update Wtotal = Wtotal + w(rt−1, at−1, t− 1)π(xt)

12. endfor

13. Normalize: for nodes in Lt: w(rt, at, t) = w(rt, at, t)/Wtotal; endfor

14. Predict: p(xt+1|x1:t) =
∑

rt

∑
at
p(xt+1|x(rt)

t)w(rt, at, t)

15. endfor

Box 1 – Pseudo-code for on-line learning of a constant hazard rate

6

1. Initialise node N (r0, a0, b0, 0): w(r0 = 0, a0 = 0, b0 = 0, t = 0) = 1 and list: Lt=0 = {N (0, 0, 0, 0)}

2. for each time t = 1 to Tmax

3. Initialise new nodelist to empty set, Lt = ∅

4. for all nodes ∈ Lt−1

5. Observe data xt and compute predictive probability: π(xt) = p(xt|x(rt−1)
t−1)

6. Compute estimate of hazard rate: h̃
(1)
t = at−1+1

at−1+bt−1+2

7. Messages to children to update weights by

to N (rt = rt−1 + 1, at = at−1, bt = bt−1 + 1, t): (1− h̃(1)
t−1)(1− h(0))w(rt−1, at−1, bt−1, t− 1)π(xt)

to N (rt = 0, at = at−1 + 1, bt = bt−1, t): h̃
(1)
t−1(1− h(0))w(rt−1, at−1, bt−1, t− 1)π(xt)

to N (rt = rt−1 + 1, at = a0, bt = b0, t): (1− h̃(1)
t−1)h(0)w(rt−1, at−1, bt−1, t− 1)π(xt)

to N (rt = 0, at = a0, bt = b0 + 1, t): h̃
(1)
t−1h

(0)w(rt−1, at−1, bt−1, t− 1)π(xt)

8. Add new children to nodelist at time t

9. endfor

10. Prune nodes: Lt = prune(Lt)

11. Normalize:

Wtotal =
∑

nodes∈Lt
w(rt, at, bt, t)

for all nodes in Lt: w(rt, at, bt, t) = w(rt, at, bt, t)/Wtotal; endfor

13. Predict: p(xt+1|x1:t) =
∑

rt

∑
at

∑
bt
p(xt+1|x(rt)

t)w(rt, at, bt, t)

14. endfor

Box 2 – Pseudo-code for on-line learning of the hazard rate in a three-level change-point hierarchy.

7

