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1 Exponential families

The methods used in this paper are particularly useful when the generating distribution comes from

the exponential family. These distributions are completely specified in terms of a finite number of

sufficient statistics, η, and can be written in the form:

p(x|η) = H(x) exp
(
ηTU(x)− A(η)

)
(1)

where A(η) is given by

A(η) = log

{∫
H(x) exp

(
ηTU(x)

)
dx

}
(2)

Exponential family distributions are particularly convenient because the conjugate prior is also a

member of this family, taking the form

p(η|χ0, v) = H̃(η) exp
(
ηTχ0 − vA(η)− Ã(χ0, v)

)
(3)

where χ0 and v are the prior hyperparameters. Thus, we can write the posterior distribution for run

length rt as

p(xt+1|x(rt)
t ) =

∫
p(xt+1|η)p(η|xr

t )dη

=

∫ ∏t+1
i=t−rt

p(xi|η)p(η|χ0, v)dη∫ ∏t
i=t−rt

p(xi|η)p(η|χ0, v)dη

= H(xt+1)

∫
H̃(η) exp

(
ηT
(
χ0 +

∑t+1
i=t−rt

U(xi)
)
− (rt + v + 1)A(η)

)
dη∫

H̃(η) exp
(
ηT
(
χ0 +

∑t
i=t−rt

U(xi)
)
− (rt + v + 1)A(η)

)
dη

(4)

and therefore only have to keep track of a finite number of sufficient statistics; i.e.,

χt = χ0 +
t+1∑

i=t−rt

U(xi) (5)

and

vt = v0 + rt (6)

for each run length to fully specify the distribution.
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2 Update algorithm for general change-point hierarchy

To derive the message-passing algorithm for the most general case, we first must introduce a suitable

notation. We define a
(n)
0 and b

(n)
0 as the prior parameters of the beta distributions over the hazard

rate in the nth layer of the hierarchy, and (a
(n)
t − a

(n)
0 ) and (b

(n)
t − b

(n)
0 ) to describe the number of

change-points and non-change-points counted in each layer. We then group these together as vectors

at =
[
a

(1)
t , a

(2)
t , ..., a

(N−1)
t

]
and bt =

[
b

(1)
t , b

(2)
t , ..., b

(N−1)
t

]
(7)

to further simplify the notation. Similarly, we define ht as

ht =
[
h

(1)
t , h

(2)
t , ..., h

(N−1)
t

]
(8)

But note that it is more convenient not to include h(0) in this vector. In this notation, then, we have

p(xt+1|x1:t) =
∑
rt

∑
at

∑
bt

p(xt+1|x1:t)p(rt, at,bt,x1:t) (9)

In a similar manner to before we can compute p(rt, at,bt,x1:t) recursively; i.e.,

p(rt, at,bt,x1:t) =
∑
rt−1

∑
at−1

∑
bt−1

p(rt, rt−1, at, at−1,bt,bt−1,x1:t)

=
∑
rt−1

∑
at−1

∑
bt−1

p(rt, at,bt,xt|rt−1, at−1,bt−1,x1:t−1)p(rt−1, at−1,bt−1,x1:t−1)

=
∑
rt−1

∑
at−1

∑
bt−1

p(rt, at,bt|rt−1, at−1,bt−1)p(xt|x(rt)
t−1)p(rt−1, at−1,bt−1,x1:t−1)

(10)

To get a handle on the change-point prior, we can write it as the marginal over ht, i.e.

p(rt, at,bt|rt−1, at−1,bt−1) =

∫
p(rt, at,bt|ht, rt−1, at−1,bt−1)p(ht|rt−1, at−1,bt−1)dht (11)

where the integral is over the interval [0, 1] in each dimension and

p(ht|rt−1, at−1,bt−1) =
N−1∏
n=1

Γ
(
a

(n)
t−1 + 1

)
Γ
(
b

(n)
t−1 + 1

)
Γ
(
a

(n)
t−1 + b

(n)
t−1 + 1

) (
h

(n)
t

)a
(n)
t−1
(

1− h(n)
t

)b
(n)
t−1

(12)
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To understand p(rt, at,bt|ht, rt−1, at−1,bt−1), we note that there are only 2N−1 non-zero entries,

corresponding to the number of possibilities arising from allowing each of the N levels of the hierarchy

to have a change-point or not. Then, for a particular possibility, i, we define Ci as the set of all levels

experiencing a change-point and C̄i as the set of levels not experiencing a change-point. Thus we can

write

p(rt, at,bt|ht, rt−1, at−1,bt−1)

=
2N∑
i=1

δ(rt −R(rt−1, Ci))δ(at −A(at−1, Ci))δ(bt −B(bt−1, Ci))
∏

m∈Ci

h
(m)
t

∏
n∈C̄i

(1− h(n)
t ) (13)

where

R(rt−1, Ci) =


0 if level N ∈ Ci

rt−1 + 1 if level N /∈ Ci
(14)

An(at−1, Ci) =


0 if level n ∈ Ci

a
(n)
t−1 if level n /∈ Ci and level n+ 1 /∈ Ci

a
(n)
t−1 + 1 if level n /∈ Ci and level n+ 1 ∈ Ci

(15)

Bn(bt−1, Ci) =


0 if level n ∈ Ci

b
(n)
t−1 + 1 if level n /∈ Ci and level n+ 1 /∈ Ci

b
(n)
t−1 if level n /∈ Ci and level n+ 1 ∈ Ci

(16)

which leads to the following expression for the change-point prior

p(rt, at,bt|rt−1, at−1,bt−1)

=
2N∑
i=1

δ(rt −R(rt−1, Ci))δ(at −A(at−1, Ci))δ(bt −B(bt−1, Ci))
∏

m∈Ci

h̃
(m)
t

∏
n∈C̄i

(1− h̃(n)
t ) (17)

where

h̃
(n)
t =

a
(n)
t−1 + 1

a
(n)
t−1 + b

(n)
t−1 + 2

(18)

4



Thus we have a (fairly) simple message-passing algorithm for inference and prediction in a change-

point heirarchy.

3 Pseudocode

In the following two boxes we present pseudocode for inferring a constant hazard rate (box 1) and

for inference in a three-level change-point hierarchy (box 2).
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1. Initialise node N (r0, a0, t = 0): w(r0 = 0, a0 = 0, t = 1) = 1 and nodelist: Lt=0 = {N (0, 0, 0)}

2. For all other nodes, set initial value of weight to zero, w(rt, at, t) = 0

3. for each time t = 1 to Tmax

4. Set total weight to zero, Wtotal = 0, and initialise nodelist to empty set, Lt = ∅

5. for all nodes in nodelist Lt−1

6. Observe data xt

7. Compute predictive probability: π(xt) = p(xt|x(rt−1)
t−1 )

8. Compute estimate of hazard rate: h̃t = at−1+1
at−1+bt−1+2

9. Send messages to children:

To N (rt = rt−1 + 1, at = at−1, t): w(rt, at, t) = (1− h̃t−1)w(rt−1, at−1, t− 1)π(xt)

To N (rt = 0, at = at−1 + 1, t): w(rt, at, t) = w(rt, at, t) + h̃t−1w(rt−1, at−1, t− 1)π(xt)

10. Add new children to nodelist at time t

11. Update Wtotal = Wtotal + w(rt−1, at−1, t− 1)π(xt)

12. endfor

13. Normalize: for nodes in Lt: w(rt, at, t) = w(rt, at, t)/Wtotal; endfor

14. Predict: p(xt+1|x1:t) =
∑

rt

∑
at
p(xt+1|x(rt)

t )w(rt, at, t)

15. endfor

Box 1 – Pseudo-code for on-line learning of a constant hazard rate
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1. Initialise node N (r0, a0, b0, 0): w(r0 = 0, a0 = 0, b0 = 0, t = 0) = 1 and list: Lt=0 = {N (0, 0, 0, 0)}

2. for each time t = 1 to Tmax

3. Initialise new nodelist to empty set, Lt = ∅

4. for all nodes ∈ Lt−1

5. Observe data xt and compute predictive probability: π(xt) = p(xt|x(rt−1)
t−1 )

6. Compute estimate of hazard rate: h̃
(1)
t = at−1+1

at−1+bt−1+2

7. Messages to children to update weights by

to N (rt = rt−1 + 1, at = at−1, bt = bt−1 + 1, t): (1− h̃(1)
t−1)(1− h(0))w(rt−1, at−1, bt−1, t− 1)π(xt)

to N (rt = 0, at = at−1 + 1, bt = bt−1, t): h̃
(1)
t−1(1− h(0))w(rt−1, at−1, bt−1, t− 1)π(xt)

to N (rt = rt−1 + 1, at = a0, bt = b0, t): (1− h̃(1)
t−1)h(0)w(rt−1, at−1, bt−1, t− 1)π(xt)

to N (rt = 0, at = a0, bt = b0 + 1, t): h̃
(1)
t−1h

(0)w(rt−1, at−1, bt−1, t− 1)π(xt)

8. Add new children to nodelist at time t

9. endfor

10. Prune nodes: Lt = prune(Lt)

11. Normalize:

Wtotal =
∑

nodes∈Lt
w(rt, at, bt, t)

for all nodes in Lt: w(rt, at, bt, t) = w(rt, at, bt, t)/Wtotal; endfor

13. Predict: p(xt+1|x1:t) =
∑

rt

∑
at

∑
bt
p(xt+1|x(rt)

t )w(rt, at, bt, t)

14. endfor

Box 2 – Pseudo-code for on-line learning of the hazard rate in a three-level change-point hierarchy.
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