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Random processes, relative entropy, probabilistic distance and chemical noise. The following is an 

expanded discussion of the material in the theoretical section of the manuscript. The objective here is to 

connect the probabilistic structure underlying MS measurement and the detection problem introduced by 

substantial chemical noise. The presentation will be divided into two parts. First the multinomial and 

Poisson models of random process sampling on a finite outcome space will be stated and their relation to 

the relative entropy and the theory of large deviations shown. Second, the appearance of chemical noise 

as events that cannot be identified with an a priori underlying distribution will be structured as a 

restriction of the probability measure on the outcome space. The overall goal will be to present MS 

detection with chemical noise as a straightforward calculation of probability with well-established roots 

in information theory. 

A spectrum is represented as a finite sampling of an independent, identically distributed (in 

sequence) random process defined on a finite outcome space D. The elements of D correspond to the 

m/z data points established by the acquisition hardware. Let O(D) be the number of elements in D. The 

random process on D is asymptotically characterized by the empirical measure or probability 

distribution  ( )
v
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physical time in two different ways leading to either a multinomial or Poisson model of the underlying 

random process. For the multinomial model, consider N sequential ion events acquired in a sampled 

spectrum. If the ion counts in the data channels are { } =
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As a Poisson model, consider each data channel j in D to be associated with an ion arrival rate αj. This 

rate describes the number of ions arriving per unit time and is formally defined by ( ) α
∆ →

∆ =
∆T 0

 lim
1

  P T
T

j
. 

The arrival rates αj can be related to a normalized distribution ( )
v

1 2 ( )
P= , ,...,

O D
p p p  on D by introducing a 

unit arrival period T such that α
=

=∑
( )

1
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O D

jj
T  or pj = Tαj. To relate the Poisson model to a measured 

spectrum, suppose the random process is sampled for a period NT and one counts the event distribution 

{ }1 2 ( )
, ,...,

O D
n n n . For a Poisson process on a single channel characterized by an arrival rate α and a 

sampling period NT, the probability of measuring n events is ( ) ( ) αα −= NT1
P NT

!

n
n e

n
. As event arrivals 

are independent, and translating arrival rates into underlying probabilities by pj = Tαj, the probability of 

the event distribution{ }1 2 ( )
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n n n  after an NT sampling period is given by 
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The multinomial and Poisson models of the underlying random process do not describe the same 

situation.  Although both models describe a sampling error, that is, a probability ( )v v
�P n p  for measuring 

an empirical outcome { }=
v

1 2 ( )
, ,...,

O D
n n n n  in a random process that has an underlying probability 

distribution ( )
v

1 2 ( )
= , ,...,

O D
p p p p , for the Poisson model, the event sum

=
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( )

1

O D

jj
n N  after a time period NT 

is not fixed while in the multinomial model it is the time period for N events to be sampled that is not 

specified.  The two models can be formally connected by taking the coupled limit of N going to infinity 

and p going to zero such that Np is finite (the arrival rate). The Poisson or finite period sampling more 

directly reflects the experimental acquisition of spectra and is the form used in our data analyses but as 
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far as we understand either model could be used and would give essentially the same results. For the 

multinomial model (S1) we have 
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Applying Stirling’s approximation for the factorial π −n n
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For the Poisson distribution (2) a similar calculation gives 
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Identifying the relative entropy by 
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the results (S3) and (S4) show by elementary algebra that for the Poisson and multinomial models the 

probability of empirically measuring a distribution νv, when the underlying distribution is
v
p , 

asymptotically decays with an exponential rate given by the relative entropy: ( ) ( )νν −=
vvvv

�
2 ,

P .
NI p

p Ae  For 

MS detection, given a reference spectrum and a measurement of that spectrum (without chemical noise), 

the probabilistic ‘difference’ is asymptotically an exponentially decaying function of the number of 

events times the relative entropy. 

In a practical setting calculating the probabilistic distance between a measured and reference spectrum 

is not an effective detection algorithm.  Chemical noise as ion fragments from co-selected molecular 

components are expected in the MS
n
 spectra of complex mixtures, but any data channel where finite 
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chemical background events are measured and where reference events are not expected (specifically 

where νj >> pj) results in a high entropy cost in (S5) and a low probability in (S3) or (S4). This is not 

wanted; reflecting the expectation of chemical noise, low detection probabilities are to be associated 

only with νj << pj. The strategy will be to shift perspective, but only slightly. Instead of representing the 

measured events as a finite sampling of the reference distribution we will consider detection by 

calculating the probability that M reference events are contained in the measured events and focus on the 

decrease in probability as M increases. Restated in the context of MS data, some peaks in the measured 

spectrum will limit the amount of the target that could be present; with the limiting amount of target 

assumed, other peaks in the measured spectrum may have too many events and these additional events 

will be identified as chemical noise and not due to the target. 

As previously defined, the measured spectrum is ν
v

N  and the reference distribution of the target is 
v

p . 

Let M be an integer representing a potential number of target events, i.e., events distributed by 
v

p . For 

fixed ν
v

N  and 
v

,p  every M splits the outcome space D into DM (on which Nνj < Mpj) and its complement 

(D-DM). Events in the complement correspond to channels with too many events for M total reference 

events. That is, they are peaks obscured by chemical noise and are ignored. For fixed ν=
v v

n N  and 
v

,p  the 

probability PM strictly decreases as M increases.  The multinomial (S1) and Poisson models (S2) are 

exactly the same except they are evaluated over DM only, e.g., for the Poisson model 
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Following the same algebra as in the derivation of (S3) and (S4) we have an expression similar to (S5): 
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normalized over the subset DM. But one can introduce an N-dependent factor in the exponential 
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convergence by renormalizing the measures over the restricted domains. Explicitly, define α such that 
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 (likewise for β) so that the restricted sum has a proper form for a relative 

entropy:   
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Appropriately, as M increases, DM converges back to D, α and β converge to 1 and the restricted relative 

entropy (S6) returns to (S5). 

 

Detection Confidence Score. Detection confidence in a single ( )τ
0PM  plot is related to ratios between 

the number of events that can be associated with the reference distribution in its original position, i.e., 

( )
0PM 0 , and the number of events that can be associated with the reference distribution when it is 

translated by τ, ( )τ
0PM . A reasonable score parameter is the ratio of the '0-offset' peak ( )

0PM 0  to some 

measure of the fluctuation in the translated peaks. Specifically, let k be a set of discrete +/- 1 amu 

translations of the reference pattern, e.g., discrete translations from -50 to +50 amu, calculate an 

averaged event number 
=−

= ∑0 0

50

P P

50

1
M M ( )

101 k

k  and subtract this from the 0-offset peak. This difference is 

then normalized by the averaged fluctuation (Equation S7). 
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Q-TOF MS spectrum of HLA-A2 peptides from BEAS-2B cells. 

 

 

 +TOF MS: 0.715 to 1.382 min from Sample 2 (after 30 min QTrap) of d_216.wiff
a=3.58417098254196530e-004, t0=-2.04348267187606640e+001 (Ion Spray)

Max. 172.3 counts.
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Figure S1. Q-TOF MS spectrum of peptides recovered from immunoaffinity purified HLA-A2 

complexes from 10
7
 infected BEAS-2B cells. Inset shows a segment of the spectrum with an 

expanded m/z scale to illustrate the uniform double charge signature reflecting the length 

restriction (8, 9 and 10mers) associated with MHC I binding. 
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Numerical generation of sampled spectra from arrival rate arrays. A number of circumstances arise in 

MS
3
 Poisson detection where one would like to scale the intensity of a reference spectrum to represent a 

changed ion flux, sample concentration or collection period, and add this new arrival rate pattern on top 

of an existing spectrum. However, one cannot simply add point by point the data array containing the 

scaled reference spectrum to the data array of the ion background spectrum. Such an exercise ignores 

sampling fluctuations (shot noise), and generates fine detail in the detection plot which would not be 

observed in actual data. Scaling the reference spectrum generates an m/z-dependent array of real 

numbers describing the event arrival rate α per collection period T, i.e., the product αT. In order to 

generate a properly sampled instance spectrum, for each m/z data point an integer-valued event number 

n must be randomly drawn from a Poisson distribution ( ) ( ) αα −= T1
P T

!

n
n e

n
where αT=αT (m/z) is the 

scaled reference spectrum (Figure S2). Numerically generated spectra containing scaled reference 

patterns yet realistic shot noise and ion backgrounds can be applied to limit of detection estimates, 

receiver operating characteristic (ROC) curves and confidence techniques. To add target to background 

spectra a few steps are required. First, and trivially, the background spectrum must be m/z translated to 

correspond to the selected m/z of the target. In these studies ion background is due to other co-selected 

peptides and the neutral losses in this spectrum reflect peptide dissociation chemistry and this should be 

preserved as typical background features. Another requirement is to determine the MS
3
 signal that 

corresponds to a given target concentration in the sample. For this a known amount of target is added to 

an MHC I workup (with a carrier system) and one measures the corresponding ion flux in the MS
3
 

spectrum. The reference spectrum measured at one concentration and collection period is then scaled to 

match the new concentration and the collection period of the MS
3
 spectrum used for the ion background. 

Once a sampled instance of the scaled reference distribution spectrum has been generated, it can be 
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added to the translated MS
3
 ion background and the summed spectrum analyzed by the probabilistic 

metric. 

 

 

 
Figure S2. Generating sampled spectra from a reference spectrum. A) The E711-19 reference spectrum from a 

9 fmol/µl sample collected for 2 minutes is scaled to describe a 10 amol/µl concentration collected for 50 

minutes. To capture sampling fluctuations or shot noise the Poisson distribution function 

( ) ( ) αα −= T1
P T

!

n
n e

n
 for each arrival rate must be sampled for the event count. Distribution functions are 

shown as insets for αT = 10 and 25 events. B) An instance of the generated spectrum with shot noise from 

sampling the scaled reference spectrum. 
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Multiple MS3 detection spectra. In collecting reference patterns for a single target, the different MS
3
 

reference spectra are acquired using alternating scans so that relative ion fluxes among the reference 

MS
3
 spectra are determined. If one can subsequently determine the level of one MS

3
 reference pattern in 

a sample containing the target then from the reference collection one knows the levels at which other 

MS
3
 reference patterns should be observed. This information can be used to identify false positives. For 

example, Poisson detection of the dissociation pattern of the y7 fragment from the peptide GILGFVFTL 

(MS
3
 483.79 : 796.46) against a background of total HLA-A2 peptides from 10 million T1 cells 

generated a score (Eqn. S7) of 6.1 at 74 events ( ( )
0PM 0  or 0-offset amplitude) while the evidence for the 

b6 fragment of GILGFVFTL (MS
3
 483.79 : 587.36) is weaker with a score of 3.6 and 46 events (Figure 

S3).  

 
 

 

Figure S3. Ambiguous Poisson plots for detecting influenza M1 peptide GILGFVFTL from the y7 fragment 

LGFVFTL (MS
3
 483.79 : 796.46, A) and the b6 fragment GILGFV (MS

3
 483.79 : 587.3, B) in the HLA-A2 

peptides extracted from 10 million T1 cells. The 0-offset amplitude in panel A (74 events) relative to the 

translated event amplitudes generates a score of 6.1 (Eqn. S7) which could suggest detection while the 0-offset 

amplitude in B (46 events) generates a lower score of 3.6. 

 

MS
3
 analysis using alternating scans with the synthetic peptide produced an event ratio of 0.6 for the 

MS
3
 spectra of the y7 to b6 fragments. That is, Poisson fits of the y7 reference spectrum in MS

3
 483.79 : 
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796.46 spectra of the synthetic peptide generated 0.6N events as a 0-offset amplitude while Poisson fits 

of the b6 reference spectrum in MS
3
 483.79 : 587.36 spectra of the peptide generated N events as a 0-

offset amplitude.  Hence if the Poisson fit of the y7 reference in the T1 sample (Fig. S3A) is a true 

positive, one would expect 123 events (0-offset) for the Poisson fit of the b6 reference pattern in the MS
3
 

483.79 : 587.36 spectrum. However only 46 events are measured (Fig. S3B), indicating the detection of 

the Fig. 3A is false.  If one adds 80 MS
3
 483.79 : 587.36 b6 reference events to the T1 MS

3
 spectrum and 

generates a new Poisson plot (Fig. S4C) with near the expected 123 0-offset amplitude, the score of 16 

indicates a high significance. Essentially, if the M1 peptide was present as suggested by the weak 

detection signature of its y7 fragment, it would have been easily detected by its b6 fragment. It was not 

and so the y7 signature is identified as a false positive. 

 

474.24 456.24 

542.28 

542.40 

474.36 485.40 + 

A B 

Figure S4. A. Poisson sampling of the b6 reference arrival 

rate scaled to add 80 events generates an instance of the 

scaled  b6 spectrum with shot noise. B. The MS
3
 483.79  : 

587.36 spectrum of the HLA-A2 peptides from T1 cells that 

generated the Poisson plot of Fig. S3B. Adding the spectra A 

and B together and calculating the Poisson plot for the  

summed spectrum (C) generates near the expected number of 

b6 events (121) and a score of 16, showing high significance. 

C
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Quantitation with negative control: T1 cells loaded with influenza M1 peptide GILGFVFTL. To 

estimate the number of copies per cell when T1 cells were loaded by incubation with a dilute peptide 

solution, three samples were prepared: 5 million unloaded T1 cells, 5 million unloaded T1 cells with 829 

amol (100 peptide copies/cell) of GILGFVFTL added to the affinity beads containing the HLA-A2 

complexes immediately after adding 17.5 µl 10% acetic acid, and 5 million T1 cells loaded with 

GILGFVFTL peptide at a concentration of 62 pg/ml. For each sample, MS
3
 spectra 483.8 : 587.4 (b6 

fragmentation) and 483.8 : 796.5 (y7) were acquired in alternating sequence. The optimal sensitivity is to 

extract sample loading from the same spectrum that is used for target quantitation. Again, a fundamental 

strength of Poisson fitting is the quantitation stability in the presence of overlapping. The unloaded T1 

cell sample produced a weak ion background for the MS
3
 483.8 : 587.4 spectrum (good for detection, 

but not quantitation), so the MS
3
 483.8 : 796.5 spectrum was used to generate a T1 background 

reference and the sample loads (ion flux times collection period) for the MS
3
 spectra of the other 

samples were normalized by Poisson fit to this reference pattern. The Poisson fits to both the T1 

background spectrum and the GILGFVFTL y7 reference for the 5 million T1 cells with 829 amols 

GILGFVFTL peptide added are shown in Figure S5. Table S1 gives the Poisson fit amplitudes for all 

three T1 samples to all three reference patterns.  

 

Table S1  T1 background GILGFVFTL 483/796 GILGFVFTL 483/587 

T1 Blank  616 50 30 

T1 + 829 amols  577 361 556 

T1 + 62 pg/ml  1855 250 256 
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The relation between the scaled reference amplitudes (shown as gray bars in Figure S5) and the 

numbers in the Table S1 is as follows. Divide the reference peak amplitudes by the largest amplitude 

(scale so the largest reference peak is 1.0), multiply all reference peaks by the number in the table and 

then multiply all peaks by the factor 0.32. The last factor accounts for a transition between peak 

integrals (the event measure for Poisson fitting) and peak heights which are plotted over the spectrum. 

For example, the largest peak in the T1 background fit (Figure S5A) is at m/z 536.3 and the gray bar 

height is 1 x 577 x 0.32 = 185 events. 

 

  

Figure S5. The T1 background in the MS
3
 483.8 : 796.5 spectrum is represented by seven major 

reference peaks whose relative amplitudes were measured in the unloaded T1 sample. The Poisson fit to 

this background for the MS
3
 483.8 : 796.5 spectrum of the T1 sample with 829 amols GILGFVFTL 

peptide added is shown in A as gray bars. The Poisson fit to the GILGFVFTL y7 reference peaks in the 

same MS
3
 483.8 : 796.5 spectrum is shown in B.  

 

The T1 background contribution to the 0-offset amplitudes is corrected by scaling the 0-offset events 

assigned in the blank T1 sample. For example, the T1 background events for the sample T1 + 829 amols 

GILGFVFTL is 94% (577/616) of the background events assigned in the T1 blank sample, hence 47 



  S-14 

(0.94 x 50) of the 361 MS
3
 483 : 796 events are due to background and subtracted (314 events assigned 

to y7 fragment of peptide). Correspondingly, 28 (0.94 x 30) of the 556 MS
3
 483 : 587 events are 

background (528 assigned to b6 fragment). For the 'T1+62 pg/ml' sample the background contribution to 

the y7 0-offset amplitude is 1855/616 x 50 = 151, hence 250-151 = 99 events are assigned to peptide. For 

b6 one subtracts 1855/616 x 30 = 90 from 256 to get 166 events. This gives Table 1 of the manuscript 

which is reproduced here. 

Table 1  T1 background y7 MS
3
 483:796 b6 MS

3
 483:587 

T1 Blank  616 50 30 

T1 + 829 amols  577 314 528 

T1 + 62 pg/ml  1855 99 166 

 

Two partially independent estimates can be made, one from the y7 and one from the b6 fragment. For the 

y7 fragment, 99 events in the 'T1+62 pg/ml' sample, scaled (divided) by the 1855 T1 background events, 

is 9.8% of the 314 events in the 'T1+829 amols' sample scaled by the 577 T1 background. For the b6 

fragment, 166 divided by 1855 ( 'T1+62 pg/ml' sample) is also 9.8% of 528 divided by 577 ('T1+829 

amols' sample). As the 'T1+829 amols' sample added peptide calibrated to 100 copies per cell, both the 

y7 and b6 MS
3
 spectra indicate 9.8 copies of GILGFVFTL per cell is loaded on T1 cells by incubation in 

a solution of peptide at 62 pg/ml. That the two measurements gave two digit correspondence in this case 

is an accident, we are certainly not suggesting this is generally expected. Quoting a percentage accuracy 

for these measurements in general is not realistic since it obviously depends on the signal intensities.  
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Comparing translated inner product (correlation function) with Poisson plots. Figures 4 and 5 of the 

manuscript illustrate in part the contrast between detection using the probabilistic Poisson plots and 

detection using the metric translated inner product or correlation function. As discussed in the 

manuscript, there are two concepts involved in both of these detection algorithms. The first is the notion 

of difference between a measured and a reference spectrum. The Poisson difference is probabilistic 

while there are a number of implementations that use metric differences (L
p
(M) spaces in general, 

although L
2
(M) or Euclidean metric spaces are most common). The second concept is to compare the 

expected optimal fit with a set of other candidates and identify the confidence in detection with some 

function of the relative amplitudes. For our implementation of Poisson detection and for the correlation 

function, the set of other candidates is generated by translation in m/z. The optimal candidate is then the 

untranslated spectrum or 0-offset peak. Again we emphasize that the common implementation of the 

metric algorithm (e.g., in SEQUEST) is to compare LC-MS/MS spectra against (primarily) low 

confidence in silico MS/MS spectra generated from a database of sequences. If the computer model 

predicts some fragments that are not generated in the experimental dissociation the consequence for 

metric scoring is secondary - one is more interested in the peaks that are expected and observed. On the 

other hand, Poisson detection with an inaccurate spectral model would generally fail - the failure to 

observe even minor predicted peaks will eliminate candidates even if there is substantial correspondence 

with other predicted peaks.  

At reviewer request we have included another comparison of the probabilistic and metric algorithms of 

the detection data in the manuscript (Figure S6). This is of the influenza peptide FVANFSMEL in the 

infected and uninfected epithelial cells and the Poisson detection illustrated in Fig. 3 of the manuscript. 
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Figure S6. Comparing detection between Poisson and correlation function algorithms. This uses the 

same data shown in Figure 3 of the manuscript and further details are given there. A is the Poisson 

detection plot corresponding to the influenza infected BEAS sample, B is the translated inner product or 

correlation function of the same MS
3
 spectrum using the same reference spectrum. C is the Poisson plot 

corresponding to the uninfected BEAS sample, D is its translated inner product or correlation function.  


