
 

Figure S1. The effect of rapamycin on GM-CSF-driven DC development. 

Rapamycin (10 ng/ml) was added on day 0 to GM-CSF-supplemented cultures of wild-

type BM. Shown are staining profiles on day 8, and the histograms of MHC cl. II 

expression in the gated CD11c+ cDC (representative of 3 independent cultures). No 

reduction in the total cell output of rapamycin-treated cultures was noted (not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S2. DC development from Pten-deficient bone marrow. 

Pten deletion was induced by tamoxifen administration to Ptenfl/fl Gt(ROSA)26Sor-

CreER+ animals (PtenΔ) or littermate controls (Ctrl) as in Fig. 2. 

(A) GM-CSF-driven DC development. Shown are staining profiles of GM-CSF-

supplemented control and PtenΔ BM cultures on days 5 and 8. No difference in the total 

cell output of the cultures was noted (not shown).  

(B) The effect of rapamycin on Flt3L-driven DC development. Control and PtenΔ BM 

cells were cultured with Flt3L in the presence or absence of 10 ng/ml rapamycin, and 

analyzed on days 5 and 8. Shown are staining profiles (representative of two 

independent experiments) with live CD11c+ DC highlighted.  



 



Figure S3. Characterization of DC-specific Pten deletion.  

Ptenfl/fl Itgax-Cre+ animals (DC-PtenΔ) and control Itgax-Cre- littermates were analyzed. 

(A) The specificity of Cre recombination in DC-PtenΔ animals crossed with the Cre-

inducible Gt(ROSA)26Sor-StopFlox-EYFP allele (Srinivas et al., 2001). Shown are 

histograms of EYFP fluorescence in the CD11chi MHC cl. II+ cDC subsets, T or B 

lymphocytes from Gt(ROSA)26Sor-StopFlox-EYFP+ Cre-negative (Ctrl), Itgax-Cre+ Pten 

heterozygous (Ptenfl/wt, Het) or Itgax-Cre+ Ptenfl/fl (DC-PtenΔ) animals.  

(B) Age-dependent development of T cell lymphomas in DC-PtenΔ mice. Shown is 

Kaplan-Meyer survival plot of the DC-PtenΔ and littermate control mice. On necropsy all 

DC-PtenΔ mice showed a large thymic mass in the mediastinum, splenomegaly and 

lymphadenopathy. Flow cytometry plots represent the analysis of a moribund 

Gt(ROSA)26Sor-StopFlox-EYFP+ DC-PtenΔ mouse, showing a recombined EYFP+ 

double-positive T cell lymphoma. 

(C) The expression of Pten mRNA in monocytes or macrophages (M, side scatterlo 

CD11c- CD11b+), cDC (CD11chi MHC cl. II+ CD8+ or CD8-) or PDC (CD11clo Bst2+) from 

DC-PtenΔ or control (Ctrl) mice. Shown are normalized quantitative RT-PCR results 

relative to the expression value in control monocytes (mean ± S.D. of triplicate 

reactions). RT-PCR was performed using SYBR Green method with primers specific for 

Pten exon deleted after Cre recombination: 5’-TGGATTCAAAGCATAAAAACCATTAC-

3’ and 5’- CAAAAGGATACTGTGCAACTCTGC-3’. 

(D) Western blot analysis of PI3K signaling in BM-derived cDC. GM-CSF-supplemented 

BM cultures from control and DC-PtenΔ mice were left untreated (0) or stimulated with 1 

µg/ml LPS for 15 or 30 min., and analyzed using antibodies against phosphorylated Akt 



Ser473 and GSK3β Ser9 (Cell Signaling Technology). Note the constitutive Akt and 

GSK3β phosphorylation in untreated DC-PtenΔ DC.  

(E) Donor contribution to different cell types of chimeric mice. Irradiated CD45.1+ 

recipients were reconstituted with CD45.2+ DC-PtenΔ or control donor BM and CD45.1+ 

competitor BM. Shown are representative CD45.1 expression profiles in the indicated 

splenic cell types, with the fraction of CD45.1- donor-derived cells indicated. Note the 

substantial (~30-45%) donor contribution in lymphocytes, poor (15-20% contribution in 

myeloid cells and an overwhelming (>80%) contribution of DC-PtenΔ but not control 

donor cells to CD8+ cDC. 

(F) Splenic pre-DC after DC-specific Pten deletion. Control or DC-PtenΔ mice carrying 

the Cx3cr1-EGFP knock-in reporter allele were analyzed. Shown is the CD8+ cDC 

population among total splenocytes (left), and the Cx3cr1hi CD11clo pre-cDC population 

among the gated lineage-negative (MHC II- CD11b- Gr-1- CD8-) cells. Percentages out 

of total splenocytes are indicated. Additional staining for pre-DC markers Flt3 and 

CD115 confirmed equal fraction of pre-DC in control and DC-PtenΔ spleens (not shown). 

 

 

 

 

 

 

 

 

 



 

Figure S4. DC populations in mice with DC-specific deletion of Tsc1 

Tsc1 conditional strain (Kwiatkowski et al., 2002) obtained from Jackson Labs was used 

for DC-specific targeting in Tsc1fl/fl Itgax-Cre+ (DC-Tsc1Δ) animals. Shown are staining 

profiles of splenic DC in the DC-Tsc1Δ and Cre-negative littermate control mice 

(representative of three animals per genotype). Note the lack of CD8+ cDC expansion in 

DC-Tsc1Δ mice. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S5. T cell response to LM-OVA in DC-PtenΔ mice.  

(A) Clustering of OVA-specific T cells in the early phase of LM-OVA infection. Splenic 

CD8+ T cells were isolated from OVA-specific OT-I TCR transgenic mice or from wild-

type C57BL/6 mice and labeled with Cell Tracker (Invitrogen) Blue and Orange dyes, 

respectively. Labeled T cells were transferred (2x106/animal i.v.) into DC-PtenΔ or 

control animals six hours prior to infection with 105 LM-OVA. After 24 hr spleens were 

imaged by multiphoton microscopy as described (Aoshi et al., 2008). Shown are 

representative still images of OVA-specific (blue) and non-specific polyclonal (red) CD8+ 



T cells from uninfected control, infected control or two infected DC-PtenΔ animals. Note 

the prominent clustering of OVA-specific T cells in all infected animals.  

(B) Expansion of OVA-specific T cells following LM-OVA infection. Splenic CD8+ T cells 

from OVA-specific OT-I TCR transgenic mice were transferred to DC-PtenΔ or control 

animals (106/animal i.v.) 24 hours prior to infection with 2x104 LM-OVA. Six days later, 

spleen and lymph nodes were analyzed for the presence of OT-I TCR-expressing T 

cells by flow cytometry. Shown are staining profiles from two control and DC-PtenΔ 

animals. Similarly, no difference in the endogenous OVA-specific CD8+ T cell expansion 

was observed between control and DC-PtenΔ animals (not shown).  
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