

Supp. Figure S1. Ferguson plot. The slopes of regression lines obtained by plotting the relative mobilities (R_f) of markers against the gel concentrations in logarithmic scale were used to calculate the molecular weight of CBS fractions. The tables on the bottom show the values of calculated molecular weights and the deduced oligomeric structure of the four fractions of the wild type CBS enzyme (Panel A) and of six selected mutants (Panel B).

Supp. Figure S2. Relation of activity and amounts of tetramer. For each mutant data on activity in relation to the amount of tetramers/oligomers from five independent expression experiments are plotted; O and Δ indicate expression at 37°C and 18°C, respectively. All values are normalized to the amounts of tetramers and activities of the wild type CBS, data are shown on a logarithmic scale. Panel A, buried mutations; panel B, solvent exposed mutations.

Mutation		Primer
n 11401	S	5'- gAT CCg gCC CgA TgC TCT gAg CAg gTg CAC - 3'
P.1177D	AS	5'- gAg CAT Cgg gCC ggA TCC ACA ggg gCT CCT - 3'
p.H65R	S	5'- TCA CCA CAC TgC CCC ggC AAA ATC TCC AAA - 3'
p.1103K	AS	5'- gCC ggg gCA gTg Tgg TgA CgT ggg gAC TCg gA - 3'
n P78R	S	5'- AAT CTC CAA AAA TCT TgC gAg ATA TTC TgA - 3'
p.1 / 010	AS	5'- gCA AgA TTT TTg gAg ATT TTg CCg ggg CAg - 3'
n K102N	S	5'- gAA gAA gTT Cgg CCT gAA CTg TgA gCT CTT - 3'
p.ix10211	AS	5'- TTC Agg CCg AAC TTC TTC CCA ATC TTg TTg - 3'
n R1250	S	5'- gAT gAT TgA ggA TgC TgA gCg CgA Cgg gAC - 3'
p.10125Q	AS	5'- TCA gCA TCC TCA ATC ATC TgC Agg CTg ATg - 3'
n E144K	S	5'- gCC Cgg ggA CAC gAT TAT CAA gCC gAC ATC Cg - 3'
p.ETTIK	AS	5'- gAT AAT CgT gTC CCC ggg CTT CAg CgT CCC - 3'
n C165Y	S	5'- AgT gAg ggg CTA TCg CTA CAT CAT CgT gAT - 3'
p.01001	AS	5'- AgC gAT AgC CCC TCA CTg CCg CAg CCA ggg - 3'
n V180A	S	5'- CTC CgA gAA ggT ggA CgC gCT gCg ggC ACT - 3'
p. • 100/1	AS	5'- CgT CCA CCT TCT Cgg AgC TCA TCT TCT CTg - 3'
n T191M	S	5'- gCC CAC CAA TgC CAg gTT CgA CTC CCC ggA - 3'
p.11911	AS	5'- CgA ACC Tgg CAT Tgg Tgg gCA TCC TCA CAA TC - 3'
n N228K	S	5'- TAC CgC AAC gCC AgC AAg CCC CTg gCT CAC - 3'
p.112201	AS	5'- TTg CTg gCg TTg Cgg TAC Tgg TCT Agg ATg - 3'
n T262R	S	5'- CAC ggg Cgg CAC CAT CAg ggg CAT TgC CAg - 3'
p.12021	AS	5'- TgA Tgg TgC CgC CCg TgC CCA CTg AAg CCA - 3'
p R266K	S	5'- gAA gCT gAA ggA gAA gTg TCC Tgg ATg CAg - 3'
P.1.2001	AS	5'- ACT TCT CCT TCA gCT TCT Tgg CAA TgC CCg - 3'
p I278T	S	5'-TgT CCT ggA TgC Agg ATC ACT ggg gTg gAT - 3'
p.12 / 0 I	AS	5'-TgA TCC TgC ATC CAg gAC ACT TCT CCT TCA - 3'
p E302K	S	5'- Cgg AgC AgA CAA CCT ACA Agg Tgg AAg ggA - 3'
p.250211	AS	5'- gTA ggT TgT CTg CTC CgT CTg gTT CAg CTC - 3'
p G305R	S	5'- CAA CCT ACg Agg Tgg AAA ggA TCg gCT ACg - 3'
p.0000010	AS	5'- TTC CAC CTC gTA ggT TgT CTg CTC CgT CTg - 3'
p G307S	S	5'- CTA CgA ggT ggA Agg gAT CAg CTA CgA CTT CA - 3'
p.000010	AS	5'- gAT CCC TTC CAC CTC gTA ggT TgT CTg CTC Cg - 3'
p R369C	S	5′- gCT gCg Tgg TCA TTC TgC CCg ACT CAg TgC - 3′
pineose	AS	5'- gCA gAA TgA CCA CgC AgC ACT ggC CCT CCT - 3'
p R439O	S	5'- ACA CCA TCg AgA TCC TCC Agg AgA Agg gCT TC - 3'
pineisy	AS	5'- ggA ggA TCT CgA Tgg TgT gCC CAC Agg Tg - 3'
p.D444N	S	5'- TCC ggg AgA Agg gCT TCA ACC Agg CgC CCg - 3'
r.~	AS	5'- gAA gCC CTT CTC CCg gAg gAT CTC gAT ggT - 3'
p.L5398	S	5'- ggT CAC CgC CAT TgA CTC gCT gAA CTT CgT - 3'
r.20000	AS	5'- AgT CAA Tgg Cgg TgA CCA CCC CgA ACA CCA - 3'

Supp. Table S1. Mutagenic primers

Sequences of mutagenic primers used to introduce the appropriate mutation into the plasmid pHCS3 which carries the wild type CBS sequence. S, sense primer; AS, antisense primer.

		Mutation	Temperature of expression 37°C				
	ent ure		SDS-soluble CBS antigen in fractions		Water-soluble CBS antigen in supernatant		
	Solve expos		Particulate fraction of the total antigen of each mutant	Total antigen of mutants relative to wild type	Tetrameric fraction of the total mutant antigen	Tetramers of mutants relative to tetramer of wild type	
	В	p.G148R	8.8 ± 2.7	52.8 ± 29.5	3.0 ± 4.3	1.4 ± 2.0	
Active site	В	p.G305R	7.7 ± 3.5	65.8 ± 9.1	83.4 ± 8.3	98.0 ± 24.0	
	В	p.G307S	21.2 ± 2.3	67.9 ± 14.3	66.7 ± 9.3	111.7 ± 46.1	
	S	p.H65R	$17.7~\pm~1.0$	91.2 ± 12.5	31.4 ± 16.6	23.1 ± 9.5	
Heme binding pocket	В	p.T262R	16.0 ± 5.4	$49.6~\pm~3.8$	2.4 ± 2.3	1.7 ± 1.4	
	В	p.R266K	21.1 ± 8.7	85.7 ± 9.3	38.4 ± 15.6	$24.7~\pm~6.3$	
	В	p.E144K	49.6 ± 3.9	255.2 ± 165.6	$4.9~\pm~1.4$	12.3 ± 5.4	
	В	p.C165Y	$28.8~\pm~4.7$	75.4 ± 41.0	$68.0~\pm~9.7$	101.2 ± 34.7	
	В	p.N228K	9.2 ± 3.6	37.5 ± 21.9	13.6 ± 16.7	7.4 ± 9.8	
	В	p.I278T	$28.2~\pm~2.0$	74.8 ± 23.9	3.5 ± 1.1	1.0 ± 0.2	
Other locations in	S	p.P49L	$10.8~\pm~0.3$	144.9 ± 75.1	$88.0~\pm~1.9$	194.6 ± 60.1	
active core	S	p.K102N	17.6 ± 8.1	39.2 ± 4.1	$29.4~\pm~5.6$	7.7 ± 2.3	
	S	p.R125Q	$20.5~\pm~6.1$	55.5 ± 22.3	7.2 ± 5.4	3.1 ± 2.1	
	S	p.T191M	$36.5~\pm~10.4$	$35.6~\pm~4.0$	$2.9~\pm~2.2$	1.7 ± 1.5	
	S	p.E302K	11.6 ± 1.3	88.3 ± 0.1	71.2 ± 17.9	$90.7~\pm~27.8$	
	S	p.R369C	27.7 ± 11.5	65.8 ± 12.2	15.7 ± 6.7	7.8 ± 2.9	
	S	p.P78R	$17.8~\pm~0.6$	57.6 ± 22.3	41.3 ± 41.9	4.3 ± 1.9	
Dimer_dimer interface	S	p.A114V	$12.7~\pm~0.4$	111.1 ± 20.2	85.2 ± 3.8	73.7 ± 8.5	
Dimer-dimer interface	S	p.E176K	$15.0~\pm~7.6$	54.7 ± 3.1	17.7 ± 13.0	3.0 ± 1.6	
	S	p.V180A	26.1 ± 1.9	54.0 ± 3.7	20.1 ± 12.7	6.6 ± 2.3	

Supp.	Table S2.	Amounts of mutant (CBS antigen ir	ı fractions of	f bacterial extracts	expressed at 37°C
I . I .			- ·· · - ·			- I

		Mutation	Temperature of expression 37°C			
	ent ure		SDS-soluble CBS antigen in fractions		Water-soluble CBS antigen in supernatant	
	Solve expos		Particulate fraction of the total antigen of each mutant	Total antigen of mutants relative to wild type	Tetrameric fraction of the total mutant antigen	Tetramers of mutants relative to tetramer of wild type
Connection loop between active core and regulatory domain	В	p.W409_ G453del	23.2 ± 4.6	43.7 ± 21.7	4.3 ± 3.2	1.2 ± 1.0
	В	p.P422L	26.1 ± 11.1	$76.1~\pm~6.0$	61.9 ± 17.5	$24.5~\pm~3.6$
	S	p.I435T	20.9 ± 11.8	$64.6~\pm~0.4$	$55.2~\pm~23.0$	23.2 ± 4.1
first CBS domain	S	p.R439Q	$10.7~\pm~8.1$	322.1 ± 59.6	$91.6~\pm~7.7$	117.6 ± 29.8
	S	p.D444N	5.1 ± 3.0	174.6 ± 16.5	$88.7~\pm~5.8$	120.2 ± 49.7
	В	p.S466L	$6.4~\pm~6.4$	$100.0~\pm~49.9$	67.2 ± 21.0	47.8 ± 10.2
Regulatory domain - second CBS domain	В	p.L539S	5.1 ± 1.9	36.6 ± 11.6	1.0 ± 1.5	0.5 ± 0.7
Wild type CBS			12.4 ± 11.1	100.0	88.0 ± 10.3	100.0
Median of all mutations (n=27)			17.7	65.8	31.4	12.3
Median of buried mutations (n=13)			21.1	67.9	13.6	12.3
Median of solvent exposed mutations (n=14)			17.7	65.2	36.4	15.5

The SDS-soluble antigen was determined by boiling the particulate and non-particulate fractions of bacterial extracts in 3% SDS and by SDS-PAGE followed by western blotting; the signal was quantified by chemiluminescence; the percentual proportion of antigen in the pellets is shown in the first column, total CBS antigen normalized to the wild type CBS is given in the second column. The ability of mutants to fold and assemble was examined by electrophoresis of water soluble non-particulate fractions under non-denaturing conditions and western blotting; percentual proportion of tetramers of the total signal is shown in the third column, yield of tetramers/oligomers in comparison to the amount of wild type tetramers is shown in the fourth column. All values with the exception of last 3 lines are means and standard deviations from 2-3 determinations.

		Mutation	Temperature of expression 18°C				
	ent ure		SDS-soluble CBS antigen in fractions		Water-soluble CBS antigen in supernatant		
	olve		Particulate fraction	Total antigen of	Tetrameric fraction	Tetramers of mutants	
	Sex		of the total antigen	mutants relative to	of the total mutant	relative to tetramer of	
			of each mutant	wild type	antigen	wild type	
	В	p.G148R	17.3 ± 14.4	23.3 ± 8.4	94.0 ± 8.4	3.2 ± 1.5	
Active site	В	p.G305R	9.4 ± 0.8	100.6 ± 31.7	68.4 ± 18.8	51.6 ± 7.2	
	В	p.G307S	9.8 ± 3.9	189.1 ± 20.7	74.2 ± 9.3	97.5 ± 17.7	
	S	p.H65R	38.0 ± 12.5	45.0 ± 7.0	12.7 ± 9.0	1.8 ± 1.4	
Heme binding pocket	В	p.T262R	14.5 ± 8.7	28.9 ± 15.0	n.d.	n.d.	
	В	p.R266K	$27.0~\pm~16.9$	117.8 ± 47.5	$90.6~\pm~8.0$	$81.0~\pm~40.6$	
	В	p.E144K	$22.5~\pm~6.6$	$39.4~\pm~28.0$	41.2 ± 42.7	5.7 ± 4.0	
	В	p.C165Y	$6.6~\pm~1.9$	$63.4~\pm~8.0$	56.6 ± 12.2	17.3 ± 7.0	
	В	p.N228K	26.7 ± 7.9	59.0 ± 31.9	n.d.	n.d.	
	В	p.I278T	43.6 ± 9.7	49.1 ± 47.0	n.d.	n.d.	
Other locations in	S	p.P49L	6.1 ± 2.3	$92.0~\pm~58.0$	91.1 ± 2.5	112.0 ± 23.0	
active core	S	p.K102N	23.1 ± 9.5	61.8 ± 12.9	64.1 ± 14.6	$20.2~\pm~7.8$	
	S	p.R125Q	18.0 ± 12.3	$71.0~\pm~1.0$	84.1 ± 5.7	53.4 ± 13.0	
	S	p.T191M	31.6 ± 14.3	23.9 ± 5.6	9.4 ± 4.6	1.1 ± 0.4	
	S	p.E302K	15.8 ± 7.3	113.8 ± 68.5	$74.0~\pm~6.4$	$48.8~\pm~1.8$	
	S	p.R369C	$27.8~\pm~8.4$	$58.5~\pm~20.2$	$75.8~\pm~8.0$	23.3 ± 3.2	
Dimon dimonintenfecce	S	p.P78R	$4.7~\pm~0.8$	77.5 ± 21.6	$71.6~\pm~6.0$	23.7 ± 5.9	
	S	p.A114V	$4.0~\pm~1.4$	56.5 ± 11.0	59.6 ± 17,3	12.0 ± 3.6	
	S	p.E176K	$4.9~\pm~4.9$	$39.8~\pm~7.2$	32.7 ± 8.8	2.1 ± 0.2	
	S	p.V180A	7.1 ± 0.1	136.2 ± 1.8	84.7 ± 8.9	75.0 ± 36.5	

Supp. Table S3. Amounts of mutant CBS antigen in fractions of bacterial extracts expressed at 18°C

		Mutation	Temperature of expression 18°C			
	ent ure		SDS-soluble CBS antigen in fractions		Water-soluble CBS antigen in supernatant	
	Solve expos		Particulate fraction of the total antigen of each mutant	Total antigen of mutants relative to wild type	Tetrameric fraction of the total mutant antigen	Tetramers of mutants relative to tetramer of wild type
Connection loop between active core and regulatory domain	В	p.W409_ G453del	22.8 ± 9.4	36.0 ± 8.6	n.d.	n.d.
	В	p.P422L	9.2 ± 8.0	78.5 ± 11.8	$67.6~\pm~4.0$	$33.3~\pm~6.9$
	S	p.I435T	15.1 ± 8.0	$96.9~\pm~18.6$	$82.7~\pm~4.4$	68.1 ± 10.8
first CBS domain	S	p.R439Q	14.6 ± 3.8	174.5 ± 79.1	$89.0~\pm~2.9$	101.6 ± 45.6
	S	p.D444N	$7.8~\pm~3.3$	281.0 ± 180.5	$80.1~\pm~7.0$	113.3 ± 49.0
	В	p.S466L	8.3 ± 8.3	100.4 ± 61.4	$74.9~\pm~7.8$	35.5 ± 15.9
Regulatory domain - second CBS domain	В	p.L539S	5.3 ± 3.0	31.7 ± 23.7	4.5 ± 3.4	0.9 ± 0.7
Wild type CBS			12.7 ± 16.6	100.0	93.1 ± 3.2	100.0
Median of all mutations (n=27)			14.6	63.4	68.4	23.3
Median of buried mutations (n=13)			14.5	59.0	56.6	5.7
Median of solvent exposed mutations (n=14)			14.9	74.3	74.9	36.3

The SDS-soluble antigen was determined by boiling the particulate and non-particulate fractions of bacterial extracts in 3% and by SDS-PAGE followed by western blotting; the signal was quantified by chemiluminescence; the percentual proportion of antigen in the pellets is shown in the first column, total CBS antigen normalized to the wild type CBS is given in the second column. The ability of mutants to fold and assemble was examined by electrophoresis of water soluble non-particulate fractions under non-denaturing conditions and western blotting; percentual proportion of tetramers of the total signal is shown in the third column, yield of tetramers/oligomers in comparison to the amount of wild type tetramers is shown in the fourth column. All values with the exception of last 3 lines are means and standard deviations from 2-3 determinations. n.d., not detected.