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Abstract

Glycation, oxidation, and nonenzymatic browning of protein
have all been implicated in the development of diabetic compli-
cations. The initial product of glycation of protein, fructosely-
sine (FL), undergoes further reactions, yielding a complex mix-
ture of browning products, including the fluorescent lysine-ar-
ginine cross-link, pentosidine. Alternatively, FL may be
cleaved oxidatively to form Nf-(carboxymethyl)lysine (CML),
while glycated hydroxylysine, an amino-acid unique to colla-
gen, may yield N4-(carboxymethyl)hydroxylysine (CMhL). We
have measured FL, pentosidine, fluorescence (excitation = 328
nm, emission = 378 nm), CML, and CMhL in insoluble skin
collagen from 14 insulin-dependent diabetic patients before and
after a 4-mo period of intensive therapy to improve glycemic
control. Mean home blood glucose fell from 8.7±2.5 (mean±1
SD) to 6.8±1.4 mM (P < 0.005), and mean glycated hemoglo-
bin (HbA,) from 11.6±2.3% to 83±1.1% (P < 0.001). These
changes were accompanied by a significant decrease in glyca-
tion of skin collagen, from 13.2±4.3 to 10.6±2.3 mmol FL/mol
lysine (P < 0.002). However, levels of browning and oxidation
products (pentosidine, CML, and CMhL) and fluorescence
were unchanged. These results show that the glycation of long-
lived proteins can be decreased by improved glycemic control,
but suggest that once cumulative damage to collagen by brown-
ing and oxidation reactions has occurred, it may not be readily
reversed. Thus, in diabetic patients, institution and mainte-
nance of good glycemic control at any time could potentially
limit the extent of subsequent long-term damage to proteins by
glycation and oxidation reactions. (J. Clin. Invest. 1991.
87:1910-1915.) Key words: glycation * nonenzymatic browning
* Maillard reaction * diabetes * oxidation

Introduction

The mechanisms underlying the development ofthe complica-
tions of diabetes are not fully understood. Even the relation-
ship between glycemic control and the risk ofdeveloping com-
plications remains unclear, although there is now a consensus
that hyperglycemia does, in itself, play an important role in the
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development of retinopathy, nephropathy, and neuropathy
(1). The processes ofglycation and nonenzymatic browning of
proteins provide an attractive hypothesis to link hyperglycemia
with the development of complications (2-4). The first step in
this reaction pathway, glycation, involves the nonenzymatic
condensation ofglucose with free amino groups in the protein,
primarily the e-amino groups of lysine residues, forming the
Amadori adduct, fructoselysine (FL)' (Fig. 1). FL may react
further to initiate a complex series of reactions, which lead to
the accumulation ofcovalently attached brown and fluorescent
products, cross-links, and other chemical modifications in pro-
teins. These reactions are known collectively as Maillard or
nonenzymatic browning reactions (5, 6). This reaction is
readily illustrated by the browning and cross-linking of pro-
teins on incubation with glucose in physiological buffers in
vitro.

A number of chemical and physical changes occur in hu-
man skin collagen with age. Fluorescence, cross-linking, and
resistance to enzymatic degradation increase with age, while
solubility and elasticity decrease (reviewed in 7). In diabetes, in
concert with increased glycation (8-10) and nonenzymatic
browning (1 1-13) of collagen, these age-related changes in the
physical and chemical properties ofcollagen appear to be accel-
erated (11-15). This suggests a role for glucose and nonenzy-
matic browning reactions in the development ofage-like chemi-
cal and functional alterations ofcollagen in diabetes. Although
the extent ofglycation ofskin collagen does not appear to corre-
late directly with the presence of complications in diabetes (9,
10), the long-term effect ofincreased glycation, i.e., the brown-
ing reaction, may be more relevant. Thus, in groups ofinsulin-
dependent diabetic patients, matched for age and duration of
diabetes, there is a significant correlation between skin collagen
fluorescence and the severity ofretinopathy, nephropathy, arte-
rial stiffness, and joint stiffness (16). Increased free-radical-me-
diated oxidative damage to biomolecules, including both lipids
and proteins, has also been proposed as a mechanism contribut-
ing to the development of diabetic complications (reviewed in
17, 18). Indeed, free radical reactions may in themselves gener-
ate fluorescent products and cross-links in proteins (19), and
thus the changes in collagen with age and in diabetes may be
the combined result of increases in glycation, browning, and
oxidation reactions.

Several distinct chemical products ofglycation and brown-
ing reactions of protein have now been measured in human
proteins. These compounds (Fig. 1) include the Amadori ad-
duct, FL, and three products of later stages of the Maillard

1. Abbreviations used in this paper: CMhL, N4carboxymethyl)hy-
droxylysine; CML, N'-(carboxymethyl)lysine; FL, Nf-(l-deoxy-fruc-
tose-l-yl)L-lysine; HbA,, hemoglobin A1; MHBG, mean home blood
glucose.
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Figure 1. Maillard reaction pathways for formation of fructoselysine,
pentosidine, and N-(carboxymethyl)lysine. FL is the Amadori com-
pound, the first stable intermediate in the Maillard reaction. CML
and the analogous compound CMhL (not shown), are formed by ox-
idative cleavage of Amadori adducts to lysine and hydroxylysine, re-
spectively. The mechanism of formation of the fluorescent crosslink,
pentosidine, is unknown.

reaction: pentosidine2 (20-23), N-(carboxymethyl)lysine
(CML) (24-27), and NE-(carboxymethyl)hydroxylysine
(CMhL) (27). The concentration of the initial product, FL, in
long-lived proteins, such as lens proteins (26, 28) and skin col-
lagen (27), increases in response to hyperglycemia in diabetes.
Among the later products ofthe Maillard reaction, pentosidine
is a fluorescent cross-link formed between lysine and arginine
residues during the browning process (20-23), while CML and
CMhL, which are colorless, are formed by oxidative cleavage of
carbohydrate adducts to lysine and hydroxylysine residues in
protein, respectively (24-27). All three ofthese late-stage prod-
ucts ofthe Maillard reaction require oxygen for their formation
(20, 24, 25), i.e., they are either direct products of oxygen radi-
cal reactions or are formed by further reaction of oxidation
products. In addition, they all accumulate gradually with age in
skin collagen (27), and at an accelerated rate in diabetes
(21, 23).

In this study, we have measured FL, pentosidine, CML,
and CMhL and Maillard-type fluorescence (excitation (Ex)
= 328 nm, emission (Em) = 378 nm) in insoluble skin collagen
from patients with insulin-dependent diabetes, both before and
after a period of improved glycemic control. Our aim was to
discover ifimprovements in control would lead to a decrease in
the level of any of these Maillard reaction products in diabetic
skin collagen, and thus, perhaps, to a reversal ofthe potentially
damaging effects ofglycation, browning, and oxidation to long-
lived proteins in diabetes.

2. The compound Maillard Fluorescent Product #1 (MFP-1) described
in references 22 and 23 was originally identified as a fluorescent cross-
link formed during browning and cross-linking of proteins by glucose.
MFP-I was isolated and characterized recently in our laboratory and
shown by nuclear magnetic resonance spectroscopy and mass spectrom-
etry to be identical to the compound, pentosidine, previously charac-
terized by Sell and Monnier (20, 21). There is some uncertainty about
whether pentosidine is formed in vivo from ribose (20, 21), glucose (22,
23), or other sugars (23a).

Methods

Patient selection. Patients (eight male, six female) with insulin-depen-
dent diabetes mellitus, who were in relatively poor glycemic control,
but motivated to improve, were recruited from the diabetes clinics of
Altnagelvin Hospital, Londonderry, and the Royal Victoria Hospital,
Belfast, Northern Ireland. Their mean age was 31.9±10.5 (19-51) yr

(mean±SD, range), and mean duration of diabetes 12.5±10.6 (0-38)

yr. Three patients had newly diagnosed diabetes. Of the remainder,10
were receiving twice daily injections of regular and NPH (Isophane)
insulin, and one a single daily injection. Mean daily insulin dose was

74±11 (52-88) U. The study was approved by the Ethical and Human
Subjects Committees of the participating institutions, and informed
consent was obtained from all volunteers.

Study design. After an initial assessment, each patient was taught to

perform home blood glucose monitoring using a Memory Glucometer
(Ames Div., Miles Laboratories Inc., Elkhart, IN) and wasgivena Mem-
ory Glucometer on loan for the duration of the study. Patients per-

formed blood glucose measurements four times daily (before meals and
at bedtime) throughout the study. For a 2-wk "run-in" period before
the first skin biopsy, no effort was made to alter glycemic control.
During this period, home blood glucose monitoring results were re-

corded, and hemoglobin A, (HbA,) was measured on two occasions.
At the end of the run-in period, a full-thickness, elliptical (1.0x 0.5

cm) skin biopsy was obtained, under local anesthesia, from the upper

inner aspect of the buttock. The biopsy samples were washed in saline
and stored at -70'C. Patients then entered a program of intensive
management to improve glycemic control, and were seen on an individ-
ual basis by one of us (T. Lyons or K. Bailie) at least once every two

weeks. At each visit, the patients received appropriate individual educa-
tion, including advice on the adjustment of insulin dosage. Between
visits, one of us was available at all times to give advice by telephone.
Each patient was also assessed initially, and subsequently reviewed, as

necessary, by a dietitian. Throughout the study, HbAl measurements
were performed every two weeks. The results of home blood glucose

monitoring were analyzed using the Ames "Glucofacts" program, and
were expressed as "mean home blood glucose" (MHBG) on a weekly
basis. At the conclusion ofthe study, a second skin biopsy was obtained
from the corresponding site on the opposite buttock. The mean inter-
val between first and second skin biopsies was 120±19 (92-157) d.

Analyticalprocedures. HbAI was measured by agargel electrophore-
sis (29); the normal range in our laboratory is 3.6-7.2%. Insoluble colla-

gen was isolated from skin biopsy samples by mechanical scraping and
solvent extraction as previously described (9). The preparation of N-
formyl-NE-fructoselysine (the standard for the measurement of FL),

CML, and CMhL have been described previously (24, 25,27). A radio-
active pentosidine standard was prepared from glucose, N-acetylargin-
ine, and N"-acetyl-[4,5-3H]ysine of known specific radioactivity, and

purified by reversed phase HPLC (23a). Levels of FL, CML, CMhL,
and lysine in insoluble collagen were measured by gas chromatogra-
phy/mass spectroscopy with selected ion monitoring (SIM-GC/MS), as

previously described in detail (26, 27). Briefly, for measurement of FL,

collagen samples were hydrolyzed in 7.8 N HCI (24 h, 110C, under

N2), yielding 40% conversion ofFL to the analyte, furosine (26,27, 30).

Because of partial conversion of FL to CML during the hydrolysis
reaction (and possible conversion ofglycated hydroxylysine to CMhL),
CML and CMhL were measured separately in NaBH4-reduced samples

(27). Furosine (formed during acid hydrolysis of FL), CML, and CMhL
were measured as their No-trifluoroacetyl methyl ester derivatives by

SIM-GC/MS. The assays were standardized using standard curves pre-

pared by standard addition, and the concentrations were normalized to

the lysine (for FL and CML) or hydroxylysine (for CMhL) content of
the collagen. The pentosidine content of skin collagen was measured,
following NaBH4-reduction and hydrolysis in 6 N HCI (24 hat 1 10°C),
by reversed phase HPLC using fluorometric detection (Ex = 328nm,
Em = 378nm) (22, 23a). Quantitation was based on fluorescence area

units, using a standard curve prepared with known amounts ofauthen-
tic pentosidine, and normalized to the lysine content ofthe protein. For
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measurement of fluorescence (Ex = 328nm, Em = 378nm), collagen
was digested with pepsin (5%, wt/wt) in 0.5 M acetic acid (adjusted to
pH 2 with 6 M HC1), for 24 h at 37°C. The samples were clarified by
centrifugation for measurement of fluorescence. More than 98% ofthe
hydroxyproline content of the skin sample, determined as previously
described (9), was solubilized by this method. The fluorescence read-
ings were normalized to the hydroxyproline content of the solution.
For each analysis all samples were analyzed together in a single batch to
avoid interassay variations. All laboratory work on the samples was
also done "blind", i.e., with no knowledge of sample identity.

Statistics. Results are expressed throughout as mean± I SD. Differ-
ences between groups before and after improved glycemic control were
compared using a paired t test.

Results

Measurements of both MHBG and HbA, (Fig. 2) show that
there were significant improvements in glycemic control in the
patient group during the course ofthis study. The overall differ-
ences and statistical analyses for these and other measurements
discussed below are summarized in Table I. Fig. 3 shows the
results of all the analyses for individual patients. It is apparent
that, in addition to MHBG (Figs. 2 A and 3 A) and HbAl (Figs.
2 B and 3 B), the extent of glycation of skin collagen also de-
creased significantly between the beginning and end of the
study (Fig. 3 C and Table I). Glycation of collagen correlated
significantly with MHBG (r = 0.65, P < 0.02) and HbA, (r
= 0.89, P < 0.0001) at the beginning, but not at the end, ofthe
study. Similarly, MHBG during the 2-wk run-in period corre-
lated significantly with initial HbA, (r = 0.56, P < 0.05), but, as
might be expected, this correlation was lost with improved gly-
cemic control. Over the course of the study, the relative de-
crease in individual patient HbAl ([initial-final]/initial) corre-
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Figure 2. Sequential mean home blood glucose (A) and HbA, (B)
results (mean±I SD) for all 14 patients during the course of the study.
The first skin biopsies were performed at time 0.

Table I. Glycation and Oxidation Products in Insoluble Skin
Collagen before and after Improved Glycemic Control

Measurement* Before After Ps

MHBG (mM) 8.7±2.5 6.8±1.4 <0.005
(4.0-12.8) (4.0-9.2)

HbAj(%) 11.6±2.3 8.3±1.1 <0.001
(76-16.6) (6.8-10.2)

mmol FL/mol Lys 13.2±4.3 10.6±2.3 <0.002
(7.2-22.7) (7.1-15.2)

mmol CML/mol Lys 0.78±0.46 0.78±0.45 NS
(0.20-1.81) (0.14-1.86)

mmol CMhL/mol Hyl 2.18±1.06 2.19±1.11 NS
(0.73-4.40) (0.49-4.48)

gmol pentosidine/mol Lys 9.6±6.6 9.7±6.4 NS
(1.5-22.5) (1.0-23.7)

fluorescence U/ag Hyp 1.25±0.62 1.22±0.51 NS
(0.34-2.55) (0.40-2.33)

* Mean±SD; ranges shown in parentheses.
$ Significance estimated by paired t test; NS, P > 0.1.

lated significantly with the relative decreases in MHBG (r
= 0.68, P < 0.01) and FL in collagen (r = 0.72, P < 0.005).
Thus, changes in mean blood glucose concentration were
mirrored by changes in glycation ofboth hemoglobin and col-
lagen. This is apparent in Fig. 3, A-C, which shows visually that
the greatest reductions in collagen FL occurred in those pa-
tients with highest initial FL values and who achieved the great-
est decreases in MHBG and HbA,.

As shown in Fig. 3, D-G and summarized in Table I, levels
ofCML, CMhL, pentosidine, and total fluorescence were unaf-
fected by the 4-mo period ofimproved glycemic control. All of
these parameters showed wide variations among individuals,
reflecting differences in age (Fig. 3), as well as duration and
severity of diabetes. There were no significant correlations of
MHBG, HbA,, or collagen FL with CML, CMhL, pentosidine,
or total fluorescence.

One other important observation made in this study is sum-
marized in Fig. 4 and its legend. In diabetic patients, either at
the beginning or end ofthe study, there was a strong correlation
between any two ofthe measures oflong-term chemical modifi-
cation ofcollagen, i.e., nonenzymatic browning products (pen-
tosidine), oxidation products(CML and CMhL), and total fluo-
rescence. Thus, the four parameters measured in this study
provide a consistent assessment of the extent of Maillard reac-
tion damage to collagen.

Discussion

Collagen, in its various forms, is a ubiquitous protein in the
body. Collagen abnormalities may therefore have widespread
consequences, such as interference with basement membrane
function in small vessels and glomeruli, or with the processes of
growth and remodelling oftissues. Such problems are well rec-
ognized features oflong-term diabetes. Increased glycation and
nonenzymatic browning of collagen and other structural pro-
teins by glucose is thought to be one ofperhaps several mecha-
nisms contributing to pathophysiological changes characteris-
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Figure 3. Individual
changes in indices of
glycemic control (A, B),
and glycation (C), non-
enzymatic browning (D,
E), and oxidation (F,
G) of collagen during
the course of the study.
Two data points are
missing from the pento-
sidine (D) and total flu-
orescence (E) results,
because of insufficient
sample. Asterisks in B
denote patients with
initial HbAj > 12%.

tic of aging (31) and the development of the complications of
diabetes (3, 5, 6, 16). The extent ofglycation of long-lived pro-
teins is directly related to ambient glucose concentration (26-
28) and does not change significantly with age in the nondia-
betic population (26-28, 32, 33). While a number of earlier
studies have shown that glycation of collagen -is increased in
response to hyperglycemia in diabetes (8-10, 15) and have
found a strong correlation between glycation of hemoglobin
and collagen (9, 10), our work demonstrates that glycation of
human skin collagen may be significantly reduced within as
short a time as a 4-mo period ofimproved glycemic control. To
our knowledge only one other study (34) has addressed the
question of reversibility of glycation of collagen. In that case
the investigators found no decrease in glycation of tail tendon
collagen in diabetic rats treated with insulin for an 8-wk period.
The failure to detect differences in collagen glycation in these
animal experiments may be explained by the shorter period
studied.

Because of the impracticality of maintaining constant gly-
cemia and obtaining multiple skin biopsies from patients, it is

difficult to estimate an exact half-time for reversal ofglycation
ofhuman skin collagen. However, the results ofthis study sug-
gest that the half-time for response of collagen glycation to
improvements in glycemic control may be as short as 4 mo.
This conclusion is drawn from analysis of individual percent
decreases in HbAl and collagen FL, normalized to the percent
decrease required to achieve the means ofthe nondiabetic pop-
ulation (5.5% HbAI, and 4.6 mmol FL/mol Lys in skin colla-
gen) (27). For example, the response in collagen glycation was
calculated as 100 x (FLi - FLf)/FLi - FLm), where FLi, FLf
refer to the initial and final measurements of mmol FL/mol
Lys in collagen, and FLm = 4.6 mmol FL/mol Lys in collagen,
the mean value for the nondiabetic population (27). By this
analysis there was an average 45% decrease in HbA, and 25%
decrease in glycation ofcollagen (r = 0.68, P < 0.01) toward the
nondiabetic means. The greater response in HbA, is consistent
with the increased rate of turnover of hemoglobin, compared
to skin collagen. The 25% decrease in glycation of collagen
within a 4-mo period indicates that the upper limit for the
half-time for reversal of collagen glycation is - 8 mo. The
actual half-time is undoubtedly shorter since none of the pa-
tients achieved normoglycemia instantaneously or maintained
normoglycemia throughout the course ofthe study. For the six
patients in poorest control at the beginning ofthe study (initial
HbAI > 12.0%, marked by an asterisk in Fig. 3 B), the average
decreases toward the nondiabetic means during the course of
the study were 66% for MHBG, 64% for HbA,, and 36% for
glycation of collagen (see Fig. 3, A-C). These results suggest
that if glycemia were completely and instantaneously normal-
ized at the beginning ofthe study (i.e., 100% decrease to normal
in MHBG), it should have been possible to achieve a 50% de-
crease towards normal in glycation ofcollagen within the 4-mo
period of our study, suggesting an actual half-time closer to 4
mo for reversal of the excessive glycation of collagen. A more
rigorous mathematical analysis cannot be justified because of
the lack ofinformation about the kinetics ofcollagen glycation
and the mechanisms by which collagen FL content was de-
creased.

There are a number of possible explanations for the de-
crease in glycation of collagen during improved glycemic con-
trol. All assume a decrease in the rate of glycation in response
to the fall in ambient glucose concentration, plus some reac-
tion in which the existing glucose adducts are consumed. As-
suming negligible turnover of insoluble skin collagen (35-38),
one possible explanation for the decrease in glycation is that the
reaction of glucose with lysine may be reversible, the hexose
being released as glucose and mannose stereoisomers, regener-
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ating the unmodified lysine residue. As reviewed in reference
39, there is firm evidence for reversal ofthe Amadori rearrange-
ment with model Amadori compounds (24), but little informa-
tion on the rate or extent of reversal of glycation ofproteins in
vivo. It is also possible that the Amadori adduct is consumed in
a forward reaction, resulting, for example, in the release ofthe
carbohydrate in a modified form, such as 1- or 3-deoxygluco-
sone (40), again regenerating the unmodified lysine residue in
collagen. The precision of our analyses do not permit us to
determine whether the loss ofFL in collagen is accompanied by
an increase in the lysine content of the protein. Thus, it is also
possible that the FL may be consumed in fragmentation and
oxidation reactions, leading to formation ofbrowning and oxi-
dation products, including pentosidine, CML (CMhL), and
other species. However, the further progress of these reactions
should be limited by the decrease in the precursor, FL.

In contrast to FL, levels ofCML, CMhL, pentosidine, and
total fluorescence in collagen did not respond to improved gly-
cemic control within the period ofthis study. This is consistent
with the fact that, to our knowledge, these compounds are
stable and irreversible chemical modifications of protein; they
are known to accumulate with age in long-lived proteins, such
as lens crystallins (26) and the insoluble fraction of skin colla-
gen (21, 27). Their constant concentration in collagen during
the limited course ofthis study is also consistent with the meta-
bolic inertness ofinsoluble human skin collagen (35-38), while
the strong correlations between the concentrations of these
compounds in collagen (Fig. 4) emphasize that they are all
sensing the same chemical environment and stresses. While
our results show that glycation of collagen may be reduced by
improved glycemic control, they also indicate that browning
and oxidation products formed during advanced stages of the
Maillard reaction result in relatively permanent, perhaps irre-
versible, modification ofthe protein. These considerations add
further weight to the argument that the establishment and
maintenance ofgood glycemic control may inhibit the develop-
ment of diabetic complications.
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