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Supplementary Figures  
 

  

 
 
Supplementary Figure S1 | MMP-9 activity plays a role in the invasiveness of BRI-JM01 
and 4T1 mammary tumor cell lines. We used an EMT (epithelial to mesenchymal transition) 
microarray dataset generated from BRI-JM01 mouse mammary cancer cell line treated with 
TGF-β24, 25 and extracted ~100 secreted and cell surface proteins. Using the screening method26 a 
survival analysis for these proteins was preformed using the breast cancer microarray datasets27, 

28. The expression levels of seven genes, i.e., matrix metalloproteinase 9 (MMP9) were 
significantly correlated with patient survival. Here we validated the role of MMP9 in the BRI-
JM01 cells and used the MMP9 secreting 4T1 mouse mammary tumor cell line29 as a positive 
control. (a) RTPCR confirmed that TGF-β induces an upregulation of MMP9 expression in both 
cell lines. Additional western blot (b) and zymogram (c) analysis of the conditioned medium of 
TGF-β treated BRI-JM01 and 4T1 cells showed that MMP9 ( ) is secreted and enzymatically 
active, respectively. (d) A functional role of MMP9 in EMT was demonstrated by exposing BRI-
JM01 (top panels) and 4T1 (bottom panels) cells to TGF-β in the presence or absence of a 
specific MMP9 inhibitor (MMP9 Inh I) which significantly inhibited the TGF-β induced 
morphology change in BRI-JM01, and to a lesser extent in 4T1 cells (magnification 40x). In 
addition, the results of a Transwell invasion assay (e) showed that TGF-β induced BRI-JM01 
(white bars) and 4T1 (black bars) cells to penetrate and transgress a Matrigel barrier. The 
presence of MMP9 inhibitor significantly reduced invasiveness and confirms MMP9’s role in the 
invasive character of BRI-JM01 cells undergoing EMT as a result of TGF-β exposure. Results 
are shown as the average (+/- SEM) of two independent experiments carried out in triplicate. 
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Supplementary Figure S2 | Kaplan-Meier curves of the risk groups for the ER+ patients 
with 10-year disease-free survival. Green and dark orange curves represent low- and high-risk 
groups, respectively. (a), (b) and (c) represent the National Research Council (NRC) gene 
signatures, NRC-1, -2 and -3 tested in the Wang cohorts, respectively.  (d), (e) and (f) represent 
the NRC-1, -2 and -3 tested in the Chang cohorts, respectively. (g), (h) and (i) represent the 
NRC-1, -2 and -3 tested in the Miller cohorts, respectively. P-values were obtained from the log-
rank test. ER+ indicates that the breast tumors are estrogen receptor positive.   
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Supplementary Figure S3 | Kaplan-Meier curves of the risk groups for the ER- patients 
with 10-year disease-free survival. Green and dark orange curves represent low- and high-risk 
groups, respectively. (a), (b) and (c) represent the National Research Council (NRC) gene 
signatures, NRC-7, -8 and -9 tested in the Wang cohorts, respectively.  (d), (e) and (f) represent 
the NRC-7, -8 and -9 tested in the Chang cohorts, respectively. (g), (h) and (i) represent the 
NRC-7, -8 and -9 tested in the Miller cohorts, respectively. P-values were obtained from the log-
rank test. ER- indicates that the breast tumors are estrogen receptor negative.    
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Supplementary Figure S4 | Survival testing of the rank genes by one-by-one removal of the 
genes from the bottom of the lists. (a) The list of rank-70 genes. (b) The list of the ranked 
genes of the National Research Council (NRC) gene signature, NRC-1 gene signature. P-values 
were obtained from the log-rank test. The Miller dataset was used for the testing.  
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Supplementary Figure S5 | Relations of the size of the random datasets and the gene 
overlapping ratio for generating gene signatures. Two distinct 1 million of randomly 
generated gene sets (RDSs, each set contains 30 genes) from cell cycle genes (see the main text) 
were used to run the Multiple Survival Screening (MSS) algorithm using different sizes of the 
random datasets. After each run, the genes were ranked based on the MSS. The number of the 
overlapped genes was determined from the top 30 ranked genes derived from each of the two 
millions of the RDSs. The overlap ratio equals to the number of the overlapped genes divided by 
30. Gray, green and blue lines represent National Research Council (NRC) gene signatures, 
NRC-1, -2 and -3, respectively.    
 
 
 



 8

Supplementary Tables 
 

 
Supplementary Table S1 Parameters used for identifying gene signatures using MSS 

Gene signature GO term Number1 RDS size2 Training size3 

NRC-1 Cell cycle 78 69 (43:26) 209 (129:80) 

NRC-2 
Immune 

response 
67 69 (43:26) 209 (129:80) 

NRC-3 Apoptosis 96 69 (43:26) 209 (129:80) 
NRC-4 Cell adhesion 87 23 (8:15) 44 (13:31) 
NRC-5 Cell cycle 80 23 (8:15) 44 (13:31) 
NRC-6 Cell motility 72 23 (8:15) 44 (13:31) 
NRC-7 Apoptosis 75 40 (25:15) 77 (50:27) 
NRC-8 Cell adhesion 69 40 (25:15) 77 (50:27) 
NRC-9 Cell growth 60 40 (25:15) 77 (50:27) 

Notes: The table lists gene groups define by GO (Gene Ontology) terms, number of random 
microarray datasets (RDS) and the ratios of “good” and “bad” tumors in each RDS used for 
running the Multiple Survival Screening (MSS) algorithm to generate the NRC (National 
Research Council) gene signatures. “Good” and “bad” tumor patients represent the breast cancer 
patients whose tumors have not recurred and recurred, respectively, within 10 years after the 
removal of their primary tumors. 1Number of genes of the gene group used for screening of the 
NRC signatures; 2Number of samples in each random dataset (ratio of the “good” and “bad” 
samples); 3Number of total samples in the original training set (ratio of the “good” and “bad” 
samples).  
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Supplementary Table S2 Datasets used in training and testing of the NRC signatures 
Dataset Number of 

Samples 
Number of ER+ 
Samples 

Number of ER- 
Samples 

GSE2034 (Wang cohort) 286 209 77 
Chang cohort 295 226 69 
GSE3494 (Miller cohort) 236 205 31 
GSE11121 200 156 44 
GSE1456 159 131 28 
GSE9195 77 77 0 
GSE6532 293 250 43 
GSE7378 54 54 0 
GSE12093 136 136 0 
Total 1736 1444 292 
Notes: Microarray datasets of breast tumor samples were used for training and testing of the 
NRC (National Research Council) gene signatures. Datasets are represented by NCBI GEO 
(http://www.ncbi.nlm.nih.gov/geo/) IDs. The Chang dataset was obtained from Chang et al., 
PNAS, 102:3738, 2005. Chang cohort is cDNA arrays, while others are Affymetrix arrays. ER+ 
and ER- indicate that the breast tumors are either estrogen receptor positive or negative.    
 

 
Supplementary Table S3 P-value of NRC signatures and meta-gene signature on three 

datasets 

Sample ER+ 

 NRC-1 NRC-2 NRC-3 NRC-1,2,3-
Meta 

Wang  
cohort 2.52 x 10-6 3.02 x 10-5 2.0 x 10-10 1.46 x 10-8 

Chang 
cohort 2.30 x 10-5 1.30 x 10-2 4.37 x 10-7 2.38 x 10-5 

Miller 
cohort 1.30 x 10-3 2.30 x 10-2 4.5 x 10-3 1.60 x 10-3 

 
Notes: NRC (National Research Council) gene signatures and the meta-gene signatures (by 
appending genes from different sets of NRC signatures) were applied to the three breast patient 
cohorts to predict “good” and “bad” tumors. “Good” and “bad” tumor patients represent the 
breast cancer patients whose tumors have not recurred and recurred, respectively, within 10 years 
after the removal of their primary tumors. values were obtained from the log-rank test. Lower P-
values represent better predictions. NRC-1,2,3-Meta (meta-gene signature) is the collection of 
the genes from NRC-1, -2, and -3. ER+ indicates that the breast tumors are estrogen receptor 
positive.  
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Supplementary Methods 

Pseudo-code for the Multiple Survival Screening (MSS) algorithm. Below is a 
detailed description of the algorithm shown schematically in Figure 2a of the main text. The 
actual programs and examples for running MSS are available as Supplementary Software. 

1. Generate the survival gene pool.  
a. Analyze the gene expression data in the training set for 10-year disease-free survival 

as implemented previously26.  
b. Use fuzzy clustering to classify the samples into 2 classes.  Genes whose P-values are 

less than a cut off value (0.01 or 0.05) are regarded as survival genes. 

2. Classify the members of the survival gene pool using the functional annotation-clustering 
tool30.  

a.  Assign survival genes to several non-exclusive gene groups based on selected GO 
(Gene Ontology) terms closely related to the development of cancer, such as cell cycle, 
apoptosis, immunological response and so on. The groups are called GO-term-defined 
gene sets.  

b. Retain only the gene sets whose size satisfies: 50 < size < 100. 

3. For each GO-term-defined gene set retained in Step 2, generate 1 million random gene sets 
(RGSs) each containing 30 genes from the GO-term-defined gene set. 

4. Generate m random datasets (RDSs) from the training set, maintaining the same ratio of 
“good” and “bad” tumors as in the original training set. 

5. Screen the GO-term-defined gene sets. 

For each GO-term-defined gene set  
For i=1:m  

For j=1:1000000 
Calculate the P-value of the jth RGS as a signature for survival for the ith RDS  
If (P-value < 0.05) pi,j = 1 else pi,j = 0  

       End  
End  

       End 

6. For each RGS, j, calculate the fraction of RDSs for which it is predictive. 

  mpFs
m

i
jij /,∑=  

7. Calculate the number of times a gene, k, is a member of an RGS that is predictive at least 
90% of the time.  
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8. For each GO-term-defined gene set, rank the genes in the set according to their Fgk and retain 
the top 30. 

9. Re-run steps 5 to 8 using another 1 million RGSs distinct from the first run. For each GO-
term-defined gene set, if duplicate runs yield the same top 28 genes in step 8 then the top 30 
genes from the second run will be used as a gene signature.         

 

The testing algorithm for gene signatures. To validate the performance of the National 
Research Council (NRC) gene signatures, we tested them in the training and testing datasets 
using the leave-one-out method. We combined the outcomes of 3 gene signatures to classify 
samples. For each dataset which contains n samples, the algorithm of testing for ER+ gene 
signatures is described below. This is a more detailed description of the algorithm shown 
schematically in Figure 2b of the main text.  
 

For i=1:n (n is the number of samples) 

1. Extract feature vectors from a given gene signature (such as NRC-1).  
a) Vi,j= (g1,i,j, g2,i,j, …, g30,i,j) where gk,i,j is the expression value of the kth gene of NRC-j in 

the ith sample (k=1, 2, … 30, j=1, 2, 3).  
b) Calculate Vi,j,g , the feature vector of shrunken class centroids extracted from the jth set 

of signature genes (NRC-j) and the relapse-free patient samples (excluding the ith one) 
and using PAMR method31.   

c) Calculate Vi,j,b , the feature vector of shrunken class centroids extracted from the jth set 
of signature genes (NRC-j) and metastasis patient samples (excluding the ith one).  

2. Classify the ith sample using the jth signature genes.  
a) Cor(Vi,j,x,Vi,j) = Pearson correlation coefficient between Vi,j,x and Vi,j. 
b) if Cor(Vi,j,g,Vi,j) >= Cor(Vi,j,b,Vi,j) assign the ith sample to the relapse free group 

else assign to the metastasis group. 

3. Classify the ith sample combining the outcomes of the three sets of the gene signatures. 
a)  if Cor(Vi,j,g,Vi,j) >= Cor(Vi,j,b,Vi,j) (j=1, 2, 3) assign the ith sample to the low-risk group 
b) else if Cor(Vi,j,g,Vi,j) < Cor(Vi,j,b,Vi,j) (j=1, 2, 3) assign to the high-risk group 
c) else assign to the intermediate-risk group.  

4. For the samples in the high-risk group determined by NRC-1, -2 and -3, we further classify 
them using NRC-4, NRC-5 and NRC-6 by running Steps 1-3. If a sample is assigned to the 
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relapse free group by NRC-4, -5 and -6, the sample will be appended to the intermediate-risk 
group determined by NRC-1, -2 and -3. If not, the sample is assigned to a new high-risk 
group.   

End 
 
    Application of the algorithm to testing of the ER- gene signatures involves running through 
steps 1-3 using NRC-j (j = 7, 8, 9) instead of 1 to 3 Also, due to the small size of the data sets, 
the intermediate- and high-risk groups are combined to form the high-risk group. 
 

Comments on the MSS algorithm 
Subgroups of tumor samples using PGS profiles. In breast cancer, ER status has been used as 
a clinical feature to classify the samples into ER+ and ER- subgroups. However, certain tumor 
types have no clear subgroup classification using either clinical features or molecular feature 
(i.e., gene expression profiles). In this situation, we propose to use the PGS (passed gene sets) 
profiles of the random training datasets (RDSs) to reveal features (i.e., clinical or molecular 
features) that could classify the samples into subgroups for MSS.  

    We used Chang’s cohort (this set has rich clinical annotations of samples) as an example to 
illustrate the PGS-based method. We first generated PGS profiles for 72 RDSs of Chang’s cohort 
(as described in the first part of Result section in the main text). Based on the PGS profiles, we 
could divide the RDSs into 2 groups (keeping the redundant samples in the groups): low PGS 
group (i.e., RDSs have less than 5-10% of the average PGSs across all RDSs) and high PGS 
group. We then conducted statistical tests (i.e., t-test for continuous data; Fisher’s test for binary 
data) between the two groups using every clinical or molecular feature of the samples. We found 
that except for ER, other features did not show statistical trends for the differences between the 
two groups. For ER, the P-value was ~0.08, a modestly significant P-value. However, it suggests 
that ER could be a useful feature to group the samples before running MSS. We tested if ER is a 
good classifier. To do so, we randomly generated 6 RDSs in which all are ER+ samples, and 
another 6 RDSs in which all are ER- samples. We performed the survival screening on these 
RDSs using the 1x105 of RGSs (randomly generated gene sets) which were used to generate the 
PGS profiles for the 72 RDSs (see the main text). If one group has high PGSs and the other has 
low PGSs, it means that ER can be used to classify the samples into 2 subgroups, which, in turn, 
can be used for running MSS. As shown in the main text, ER is in fact a classifier for grouping 
samples for MSS.  
 
Determination of the appropriate number of genes for a gene signature. The number of 
breast cancer signature genes ranges from several to a few hundred among the five well-known 
breast cancer gene signatures. Among these signatures, 70-gene signature and the 21-gene 
Oncotype DX are the most well-known ones. We decide to start from a larger set (70 genes) to 
refine the size of signature genes. Therefore, in the preliminary testing, we decided to use van 't 
Veer dataset27, which was used to generate the 70-gene signature, to generate another 70-gene 
signature by running MSS. van 't Veer’s 70-genes were selected from 231 modulated genes27. 
We used these 231 modulated genes to generate 1 million of RGSs, in which each RGS contains 
70 genes. Using Wang dataset28, we generated 72 RDSs. After running MSS, we took the top-
ranked 70 genes, which have only a few genes overlapped with van 't Veer’s 70-genes, to 
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conduct survival testing in another independent dataset32 (Miller dataset). In the tests, we 
systemically removed genes, one-by-one, from the bottom of the 70 gene list. Interestingly, we 
found that the P-values for the survival analyses were not changed until the gene set was reduced 
to the top 28 genes. Upon removing more genes from this list, the P-values suddenly increased 
and fluctuated (Supplementary Figure S4a). Based on these observations we decided to use 30 
genes as the size of the NRC gene signatures. We also validated the gene size using NRC-1, -2, 
and -3 by systemically conducted the survival tests by removing genes, one-by-one, from the 
bottom of the genes in each signature. Removal of several genes from the bottom of the rank-
lists did not affect the P-values of the survival tests in testing dataset (Supplementary Figure 
S4b), suggesting that 30 is a reasonable size. 
 

Gene group selection. In the MSS algorithm, we suggested selecting gene groups based on GO 
terms associated with cancer hallmarks. Normally most of the GO terms contain 60-80 genes. 
We realize that there are likely a number of cancer hallmark genes that are not known yet. 
Hence, our reliance on GO term annotation may result in lacking some important genes in our 
signatures. Nevertheless, this does not detract from the predictive value of our GO-term-derived 
signatures. One strategy to widen our net is to augment the GO terms with other information, 
such as, text mining of genes based on co-occurrence with cancer hallmark genes or stem cell 
genes in the same sentences of the PubMed abstracts, or perhaps to include genes that physically 
or genetically interact with cancer hallmark genes or stem cell genes. These associated genes 
might then be used for running MSS. 
 

Number of random training datasets for MSS. We use the NRC-1 signature to illustrate how 
we determined the size of random datasets. First we generated two sets (A and B) of 1 million 
RGSs from the cell cycle genes (see the main text) such that no any RGS is common between the 
two sets. Using the Wang dataset, we generated 5, 10, 15, 20, 25, 30, 35 and 40 sets of RDSs. 
For each set of RDSs, we ran MSS using the RGS Sets A and B and ranked the genes as 
described in MSS. Then we calculated gene overlapping ratio:  the numbers of the common 
genes among the top 30 genes are divided by 30. We found that the top 29 genes are the same for 
the RDS sets with the sizes of 35 and 40. In order to further investigate these phenomena in 
details, we extend the same analyses by generating 14 sets of RDSi (i= 27 +j; j= 0, 1, 2,..13). To 
obtain robust results, such analyses have been conducted 100 times and the average gene 
overlapping ratios were calculated and plotted (Supplementary Figure S5). As shown in 
Supplementary Figure S5, gene overlapping ratios are stable when the RDS sets have the sizes 
above 30. We extended the same analysis to NRC-2 and -3. Similar results were obtained 
(Supplementary Figure S5). Based on these observations, we decided on the somewhat arbitrary 
value of 36 in our own production runs because we had 36 compute-nodes available to us to run 
our calculations in parallel. 
 
Cells, cell culture, antibodies and reagents. BRI-JM01 cells were isolated, 
characterized and cultured as described24. Mouse mammary 4T1 tumor cells were obtained from, 
and cultured according to the instructions of the ATCC. Human recombinant TGF-β1 (R&D 
Systems) and MMP9 Inhibitor I (Calbiochem) were reconstituted according to the 
manufacturer’s instructions.  
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Reverse Transcriptase Polymerase Chain reaction (RT-PCR). Cells were grown 
in 35 mm dishes for 24 h in the absence or presence of TGF-β1 (100 pM), and total RNA was 
isolated using the RNeasy mini kit (Qiagen) according to the manufacturer’s instructions. First 
strand cDNA was synthesized in a final volume of 20 µl containing 500 ng of total RNA, 1 µL 
dNTPs (10 mM each) and 1 µL oligo dT (500 ng/ul). After 5 min at 65°C, samples were quickly 
chilled on ice. Four µL 5x first strand buffer and 2 µL DTT (0.1 M) was added. After 2 min at 
42°C 1 µL Superscript II (200 units) was added followed by incubation at 42°C (50 min) and 
70°C (15 min). The PCR reaction was carried out in a volume of 50 µL containing 2 µl of the 
first strand reaction, 1 µL (10 µM) of each of the primers specific for mouse MMP9 (5’-TGA-
ATC-AGC-TGG-CTT-TTG-TG-3’ and 5’-ACC-TTC-CAG-TAG-GGG-CAA-CT-3’) or 
GAPDH (5’-ACC-ACA-GTC-CAT-GCC-ATC-AC-3’ and 5’-TCC-ACC-ACC-CTG-TTG-
CTG-TA-3’), 40 µL H2O, 5 µL 10x buffer, 0.5 µL 10mM dNTP mix and 0.5 µL Taq Polymerase 
(5 U/ul). PCR reactions were carried out using the following conditions: 2 min at 95°C followed 
by 25 cycles with an annealing temperature of 55°C. RT-PCR products were evaluated on a 2% 
agarose gel. 
 
Western blot. Cells grown in 35 mm dishes were treated for 24 h with or without TGF-β1 
(100 pM). Conditioned medium was collected and 30 µL conditioned medium was resolved by 
SDS-PAGE (10%) under reducing conditions. Proteins were transferred to nitrocellulose, 
membranes were incubated with αMMP9 antibodies (1/5000, Cedarlane), and immunoreactive 
bands were visualized by chemiluminescence (Perkin-Elmer). 
 
Morphology assay. BRI-JM01 and 4T1 cells were seeded in 12-well dishes and grown to 
70% confluency. Cells were then treated for 24 h with 100 pM TGF-β1 in the absence or 
presence of 10 µM MMP9 Inhibitor I. Monolayers were washed with PBS and then fixed and 
stained with 0.2% crystal violet in anhydrous ethanol for 5 minutes at room temperature. Excess 
staining fluid was removed and wells were rinsed with tap water. Finally, images were captured 
using a Nikon CoolPix 995 digital camera mounted on a Leitz Labovert inverted microscope. 
 
Transwell invasion assay. 24-well Biocoat Matrigel invasion chambers (8 µm; BD 
Biosciences) were used according to the manufacturer’s instructions. Briefly, top chambers were 
seeded with 5x104 viable BRI-JM01 or 4T1 cells in cells specific culture medium containing 
0.2% FBS, bottom chambers were filled with the same culture medium containing 10% Fetal 
Bovine Serum (FBS). TGF-β1 (100 pM) +/- MMP9 Inhibitor I (10 µM) was added to both 
compartments. After 24 h, non-invasive cells remaining in and on the Matrigel-coated membrane 
were removed with a cotton swab. Cells that migrated to the other side of the membrane were 
fixed and stained with 0.2% crystal violet in anhydrous ethanol. Migratory cells in four random 
fields of each membrane were counted using a light microscope at 200x magnification. 
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