Supporting Information

Xia et al. 10.1073/pnas.1004949107

Fig. S1. Phylogenic tree of Nramp proteins in rice (Os-) and Arabidopsis (At-). The 0.1 scale shows substitution distance.

Fig. 52. Transport activity for iron and manganese in yeast. Yeast mutant (*fet3fet4* or *smf1*) transformed with the empty vector pYES2, Nrat1, or AtNramp4 were spotted on synthetic medium at serial dilutions (OD600, 0.2, 0.02, 0.002, and 0.0002). (*A*) Complementation of iron uptake. Transformed *fet3fet4* were grown on a medium (pH 5.5) buffered with 50 mM Mes in the presence or absence of BPDS. (*B*) Complementation of manganese uptake. Transformed *smf1* were grown on a medium (pH 6.0) buffered with 50 mM Mes in the presence or absence of 2 mM EGTA. The plates were incubated at 30 °C for 5 d.

Fig. S3. Transport activity of Nrat1 for cadmium. Yeast strain (BY4741) transformed with empty vector pYES2, Nrat1, or AtNramp4 were exposed to a solution (pH 4.6) containing 2, 5, 10, or 20 μ M CdCl2 for 2 h. The Cd concentration was determined by atomic absorption spectrophotometer. Data are means \pm SD of three biological replicates.

Fig. S5. Effect of expression of rice *Nramp* genes on Al sensitivity in yeast. (A) Yeast cells (BY4741) were transformed with the empty vector pYES2, *Nra1*, *Os01g0503400*, *Os03g0208500*, *Os06g0676000*, *Os07g0258400*, *Os07g0257200*, and *Os12g0581600*. The transformed cells were spotted on the LPM-ura medium (pH 4.2) buffered with 5 mM succinic acid with or without AlCl3 at serial dilutions (OD600: 0.2, 0.02, 0.002, and 0.0002 from left to right). The plates were incubated at 30°C for 3 d. (*B*) Al uptake by yeast expressing different rice Nramp genes. Yeast cells expressing different rice Nramp genes were exposed to a solution containing 30 μ M Al (pH 4.2) for 2 h. The concentration of Al in the digest solution was determined by atomic absorption spectrophotometer. Data are means \pm SD of three biological replicates.

Fig. S6. Localization of Nrat1. (A–C) Subcellular localization of Nrat1. GFP alone (A), GFP fused with Nrat1 at the N terminal (B), or the C terminal (C) was expressed in the epidermal cells of onion. Plasmolysis was induced by 1 M mannitol. Arrowhead indicates the nucleus. (D–H) Immunostaining of GFP in the GFP transgenic rice under the control of Nrat1 promoter or wild-type. (D and E) Root tip without Al (D) or with Al treatment (E); (F and G) root segment at 15 mm without (F) or with Al (G) treatment. (H) wild-type root. (Scale bars in A–H, 100 µm.)

Fig. 57. Tos-17 insertion lines of Nrat1. (A) Insertion position of two Tos17 insertion lines (NE7009 and NF7046) indicated by triangles. (B) Expression of Nrat1 mRNA in wild-type rice (WT), NE7009, and NF7046. The expression was examined by RT-PCR.

Fig. S8. Concentration of Al in the root-cell sap of complementation lines. Rice *Nrat1* gene was introduced into a Tos-17 insertion line (NE7009) by *Agrobacterium*-mediated transformation. Wild-type rice (WT), NE7009 and three independent transgenic lines were exposed to a solution containing 30 μ M Al for 8 h. The root-cell saps were extracted by a frozen-thawed method and determined with atomic absorption spectrophotometer. Data are means \pm SD of three biological replicates.

Fig. S9. Effect of temperature on Al uptake. (A) Al in the root-cell sap. (B) Al content in the cell wall. Wild-type rice and two knockout lines were exposed to 30 μ M Al (pH 4.2) for 8 h. The root tips (0–1 cm) were excised for determination. Data are means \pm SD of three biological replicates.

Table S1.	Concentration of cations in the roots and shoots of wild-type rice (WT) and mutant
(NE7009)	

	Shoots		Roots	
	WT	NE7009	WT	NE7009
Macrocation	s (mg kg ⁻¹)			
к	28.5 ± 0.42	28.0 ± 0.89	18.2 ± 0.54	17.2 ± 0.76
Ca	2.18 ± 0.23	2.07 ± 0.08	0.58 ± 0.01	0.61 ± 0.03
Mg	2.55 ± 0.11	2.45 ± 0.02	1.43 ± 0.17	1.63 ± 0.19
Microcations	(µg kg ^{−1})			
Fe	83.1 ± 9.34	81.7 ± 2.08	191.0 ± 38.13	220.7 ± 4.66
Cu	14.6 ± 0.43	14.8 ± 0.20	204.4 ± 23.5	253.1 ± 26.5
Zn	33.3 ± 2.57	32.1 ± 0.85	54.8 ± 4.77	66.0 ± 7.2
Mn	99.2 ± 10.9	100.9 ± 4.0	—	_

The plants were cultured in half-strength Kimura B nutrient solution for 1 mo. The concentration of cations was determined by atomic absorption spectrophotometer after digestion with HNO_3 . Data are means \pm SD of three biological replicates. —, not detectable.

PNAS PNAS