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SI Text
SI Section 1: Background to Fluctuation Scaling. A recent article by
Eisler, Bartos, and Kertesz (1) provides a good introduction to
fluctuation scaling (FS). In temporal fluctuation scaling, we start
from a multitude of M time series measured in the interval [0,T]
and assume that the constituents, that is, the random variables
making up the signal, are additive. The signals are divided into
blocks of duration Δt, and for any block in the interval [t, t + Δt)
the signal can be decomposed as

fΔti ðtÞ ¼ ∑
NΔt

i ðtÞ

n¼1
VΔt
i;n ðtÞ; [S1]

where NΔt
i ðtÞ is the number of constituents within the block, that

is, the number of random variables VΔt
i;n ðtÞ to be summed to-

gether, of signal i during [t, t + Δt). We assume that VΔt
i;n ðtÞ≥0; so

that the time average of fΔti ; denoted by hfΔti i; does not vanish. It
is defined as

�
fΔti

� ¼ 1
Q

∑
Q− 1

q¼0
fΔti ðqΔtÞ ¼ 1

Q
∑
Q− 1

q¼0
∑

NΔt
i ðqΔtÞ

n¼1
VΔt
i;n ðqΔtÞ; [S2]

where Q = T/Δt. For any Δt, the variance can be obtained as

σ2i ðΔtÞ ¼
D�

fΔti

�2E−
�
fΔti

�2
: [S3]

This quantity characterizes the fluctuations of the activity of signal
i from block to block. When f is positive and additive, it is often
observed that the relationship between the SD σi (Δt) and the
mean hfΔti i is given by a power law

σiðΔtÞ ∝ hfiiαT ; [S4]

where one varies i keeping Δt fixed. Note that the value of Δt
does not affect the scaling, as it can be absorbed in the pro-
portionality constant. The exponent αT is in the range [1/2, 1],
and the subscript T indicates that the statistical quantities are
defined as temporal averages to distinguish them from ensemble
fluctuation scaling (1).
In the main text, we discuss a more system-specific form of

fluctuation scaling using spin variables Si,j(t) as constituent var-
iables. Further, instead of having access to signals in continuous
time, we consider, as a starting point, data sampled at discrete
time intervals such that two consecutive time points t and t + 1
are separated by δt in physical time. The corresponding events in
real physical time may have an arbitrary time resolution but, due
to finite temporal sampling resolution, all events within one
block may be considered concurrent.

SI Section 2: Example of Fluctuation Scaling. Let us consider a set of
state or spin variables Si,j(t) ∈ {−1,0,1}, one for each application i
of every user. Here Si,j(t) = 1 corresponds to user n adopting
application i at time t, Si,j(t) = 0 corresponds to there being no
activity from user j regarding application i at time t, and Si,j(t)= −1
corresponds to user j dropping application i at time t. The FS
exponent α can be interpreted in terms of correlations between
the constituent variables, in this case the spin variables Si,j(t). This
leads to two limiting cases. If the constituent variables are un-
correlated, one obtains square-root scaling with α= 1/2, whereas
if the constituent variables are fully correlated, one obtains a lin-
ear scaling with α = 1.

Two simple examples will illustrate this interpretation. Consider
a variable Si,j(t) with the mean and variance given by hSii and Σ2

Si ,
respectively. If the random variables Si,j(t) are independent and
identically distributed for all j and t, we obtain by the linearity of
the expectation operator E[·] taken over time that

μi ¼ E½fiðtÞ� ¼ E
h
∑
N

j¼1
Si;jðtÞ

i
¼ NE

�
Si;jðtÞ

� ¼ NhSii: [S5]

The variance is given by

σ2i ¼ Var½fiðtÞ� ¼ Var
h
∑
N

j¼1
Si;jðtÞ

i
¼ NVar

�
Si;jðtÞ

� ¼ NΣ2
Si ; [S6]

because the varianceof the sumofuncorrelated randomvariables (as
follows from their independence) is the sum of their variances.
Combining the expression for the mean and the variance gives
σ2i ¼ ðΣ2

Si=hSiiÞμi, so that α = 1/2. The exponent α = 1/2 is then
a consequence of the central limit theorem and is reminiscent of the
1=

ffiffiffiffi
N

p
fluctuations of extensive quantities, such as energy, in equi-

librium statistical mechanics (1). On the other hand, if the random
variables Si,j(t) are completely correlated, i.e. Si,1(t) = ··· = Si,N(t),
we can write∑N

j¼1 Si;jðtÞ ¼ NSi;1ðtÞ which, as before, gives

μi ¼ NE
�
Si;1ðtÞ

� ¼ NhSii [S7]

but now

σ2i ¼ Var
�
NSi;1ðtÞ

� ¼ N2Var
�
Si;1ðtÞ

� ¼ N2Σ2
Si ; [S8]

resulting in σi ¼ ðΣ2
Si=hSiiÞμi, so that α = 1. One way to produce

α = 1 is by a global driving force that imposes strong fluctuations
that dominate over the local dynamics of the system (1).

SI Section 3: Stationarity of Time Series. The fact that for most
applications ni(t) is an increasing function of time suggests that the
system is not stationary and, consequently, violates the assumption
on stationarity. The question then becomes whether the system is
sufficiently close to stationarity so that the fluctuation scaling ex-
ponents can be interpreted in terms of correlations among the
constituent variables. We can write

μi ≡ hfiðtÞi ¼ 1
Ti

∑
Ti

t¼1
fiðtÞ ¼ 1

Ti
∑
Ti

t¼1
½niðtÞ− niðt− 1Þ� ¼ 1

Ti
∑
Ti

t¼1
∑
N

j¼1
Si; jðtÞ;

[S9]

where the latter sum is taken over allNFacebookusers andwehave
used ∑N

j¼1 Si;jðtÞ ¼ niðtÞ− niðt− 1Þ. Let us now assume that only
irreversible Si,j(t) = 0 → Si,j(t + 1) = 1 changes are possible. The
validity of this assumption has mostly to do with the choice of the
investigated time period. Facebook applications had just recently
been introduced, there was less choice of and less competition
between applications and, hence, dropping of applications was
conceivably rather rare. Quantifying the extent of uninstallation of
applications would, however, require access to microlevel data.
Instead of letting the sum indexed by j in the equation run over

the entire system (over all users), we construct a restricted sum
consisting of those users only who have not adopted application
i earlier. This yields
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μi ¼
1
Ti

∑
Ti

t¼1
∑
N

j¼1
Si;jðtÞ ¼ 1

Ti
∑
Ti

t¼1
∑

N − niðtÞ

k¼1
Si;jkðtÞ; [S10]

where the subset of indices j1, j2, . . ., jN−ni(t) ∈ {1,2, . . ., N} such
that Si,jk (τ) = 0 for τ < t.
The nonstationarity of fi(t) is reflected in the fact that the

number of terms in the above sum,N− ni(t), depends on (typically
decreases with) time. Although this is true for almost every ap-
plication, it may be a problem only for highly popular applica-
tions, namely, in the high-density regime. Let us impose the
stringent condition that the system is within the low-density re-
gime, corresponding to the set of applications for which fi(t) are
sufficiently close to stationarity, when at most 1% of users have
the application. Within this regime, the number of terms in the
last sum of Eq. S10 is always between 0.99N and N and, conse-
quently, it decreases only marginally and the time series can be
taken to be sufficiently stationary.
To see how far the low-density regime extends, we set N − n* =

0.99N, giving an upper limit n*=N/100. The number of users at the
endof the timeperiod isni(T)=ni(0)+μiT≈μiT, theapproximation
being rather good in the low-density regime, and we can assume that
the approximate stationarity holds throughout the time horizon for
applications with niðTÞ ≤ n∗, and setting n* = μ*T defines the low-
density regimeas 0<μ<μ*withμ*=N/(100T).The stationarity can
be expected to break down for applicationswith μi> μ*≈ 414 so that
log(μ*) ≈ 2.6. This means that, even under this relatively strict in-
terpretation of stationarity, 97.8% of time series are stationary. This
also means that the scaling in Fig. 2C holds for over two orders of
magnitude above the cross-over point μx. We conclude that the sys-
tem is sufficiently stationary so that the fluctuation scaling exponents
for temporalfluctuationsmay be interpreted in terms of correlations
between the constituent variables.
We can also relax the assumption about having only irreversible

Si,j(t)=0→Si,j(t+1)=1changes. LetSi,j(t)=1correspond touser j
adopting application i at time t, Si,j(t) = 0 correspond to there be-
ing no activity from user j regarding application i at time t, and
Si,j(t) = −1 correspond to user j dropping application i at time t.
Allowing Si,j (t) = −1 means that the value of hfii may vanish or
become negative. Of the M = 2,705 applications analyzed, 2,562
have positive μi > 0, 5 have μi = 0, and for 138 applications μi < 0.
Combining these numbers, we can see that 95% of the temporal
averages μi are, in fact, positive and, consequently, nonnegativity
does not pose a problem.

SI Section 4: Breakpoint Analysis for Linear Regression. Consider the
linear regression model

yi ¼ xTi βi þ ui; i ¼ 1; . . . ; n [S11]

where yi is observation i of the dependent variable, xi is a k × 1
vector of regressors with the first component set equal to unity,
and βi is a k × 1 vector of regression coefficients that may vary
over time. The null hypothesis is that the regression coefficients
remain constant,

H0 : βi ¼ β0; i ¼ 1; . . . ; n; [S12]

against the alternative hypothesis H1 that at least one of the
coefficients changes. In general, if there are m breakpoints, the
regression coefficients are constant within the resulting m + 1
segments. The model can be rewritten to incorporate the
breakpoints as

yi ¼ xTi βj þ ui; i ¼ ij− 1 þ 1; . . . ; ij; j ¼ 1; . . . ;mþ 1; [S13]

where {i1,. . .,im} are the set of breakpoints and j is the segment
index. Conventionally, i0 = 0 and im+1 = n. Breakpoints are

typically not given exogenously but need to be estimated from
the data. Finding breakpoints in data is also known as testing for
structural change in data, and there are two frameworks for
doing that: F statistics and generalized fluctuation tests (2). Here
we follow the F-statistics test that can be used to test against
a single breakpoint, corresponding to the case with m = 1 in the
above framework, at an unknown observation i1 with segment j=
1 covering observations i = 1,. . .,i1 and segment j = 2 covering
observations i = i1 + 1,. . .,n. To identify the breakpoint i1, we
compute a sequence of F statistics for a change at observation
i given by

Fi ¼
buTbu−buðiÞT buðiÞbuðiÞT buðiÞ=ðn− 2kÞ [S14]

where bu are the ordinary least-squares residuals from the un-
segmented (no breakpoint) model and buðiÞ are the ordinary
least-squares residuals from a segmented model with a break-
point at observation i, and the regression is carried out sepa-
rately for each segment (2).
From the above definition it is clear that Fi is proportional to the

residuals of the unsegmented model, buTbu, and inversely pro-
portional to the residuals of the segmented model, buðiÞTbuðiÞ. To
ensure that each regressionmodel can be estimatedwith a sufficient
number of data points, we need to introduce a trimming parameter
h such that we compute Fi for a subset of i = h,h + 1,. . .,n − h
observations. In practice, we can compute Fi for all i = 1,. . .,n and
simply ignore the resulting values of Fi for very small and very large
values of i, where a suitable value of h is chosen by the practitioner.
The null hypothesis H0 is rejected if the maximum value of F is
“large” (2). What precisely it means for F to be large depends on
the context. In any case, what matters is the relative height and
narrowness of the maximum value of F with respect to all of the
other values: A peak that is high and narrow is stronger evidence of
a structural change in data than a peak that is low and wide.
The results are shown in Fig. S1. The data have been sorted in

ascending order based on the x variable such that μð1Þ ≤ μð2Þ
≤ . . .≤ μðMÞ. In the case of empirical data, the F statistic behaves
smoothly and develops a clear maximum. This is strong evidence
of there being a structural change in the data such that the two
regimes to the left and right of the breakpoint are governed by
different exponents, αI ≈ 0.55 and αC ≈ 0.85, respectively.
The behavior of the F statistic for the synthetic data, however, is

qualitatively very different. Instead of a smooth, single maximum,
the error landscape is more rugged, and the maximum appears to
be degenerate. Strictly speaking, there is a single maximum at
F(k) ≈ 186 for observation k= 562, corresponding to log(μ(562)) ≈
−0.38, but there is also a secondary maximum for k ≈ 1,800. The
lack of a clearly defined maximum suggests that there is no suffi-
cient statistical evidence to introduce a breakpoint in the data.
Note that the above framework does not allow introducing mul-
tiple breakpoints. Although this could be done in principle by
adding more degrees of freedom (more parameters), it becomes
exceedingly difficult to justify them, especially if the differences in
the slopes are very small. To demonstrate this, consider accepting
the view that there is, in fact, a legitimate breakpoint at k= 562 in
the synthetic data. This results in two exponents, α ≈ 0.84 and α ≈
0.87, which are so close to one another that it is difficult to justify
theoretically their slightly different values. We conclude, given
these considerations, that the behavior of the synthetic data is
governed by just a single exponent αS ≈ 0.84.

SI Section 5: Supporting Data Analysis. Let us define the total activity
as FðtÞ ¼ ∑

i
fiðtÞ, where the sum runs over all applications that

are in existence at time t. The total activity F(t), which is not to
be confused with the F statistic in SI Section 4, corresponds to
the total number of applications installed in the 1-hour interval

,
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between t and t − 1. We show F(t) in Fig. S2, where the daily
24-hour period of activity is clearly visible.
It is possible that, for a given application, the mean and SD of

activity fi result from the application being at a certain stage of its
lifetime. Consequently, given that we have a mixture of old and
new applications, if the scaling of SD of fi with the mean of fi
were dependent in a discontinuous manner on the age of the
application, this could in principle contribute to the cross-over
reported in the main text. To test this hypothesis, we define the
time-shifted activity for application i as giðτÞ ¼ fiðti þ τÞ with τ≥0,
where ti is the (approximate) introduction time of application i.
The time-shifted aggregated numbers ni(ti + τ) are shown in the
upper panel of Fig. S3, and the time-shifted activities gi(τ) are in
the lower panel. We can now compute the mean and SD of the
time-shifted activity gi(τ) by truncating the time series at various
values of τ, that is, by taking the first τ points of the time series
since birth. We define an ensemble average of the time-shifted
activities taken over all N(τ) applications that have a lifetime of
at least τ as

gðτÞ ¼ 1
NðτÞ ∑

NðτÞ

i¼1

1
τ
∑
τ

t¼1
giðtÞ: [S15]

Similarly, we can define the ensemble SD of the time-shifted
activities as

hðτÞ ¼ 1
NðτÞ ∑

NðτÞ

i¼1

�
1

τ− 1
∑
τ

t¼1
ðgiðtÞ− hgiðτÞiÞ2

�1=2
; [S16]

where hgiðτÞi ¼ ð1=τÞ∑
τ

t¼1
giðtÞ. We plot h(τ) versus g(τ) for a

number of different truncation points τ ∈ 50,60,. . .,1,000 in Fig. S4.
A linear fit describes their dependence very well, and demonstrates
that the relationship between the mean and the SD for the en-
semble of applications does not depend in a discontinuous manner
on the age of the application, that is, the stage of the application in
its lifetime. The fact that the dependence of h(τ) on g(τ) holds
throughout themeasured lifetime of applications demonstrates that
the cross-over in the fluctuation scaling plot in the main text cannot
be explained by having amixture of applications that are at different
stages of their lifetime. Finally, we repeat the fluctuation scaling
plot in Fig. S5, this time using only applications that have lifetimes
50 ≤ τi ≤ T such that they were introduced during the first T − 50
time steps, corresponding to ti ∈ [0, T − 50], such that for each
application we have at least 50 points for estimating the first and
second moments. The result is essentially identical to the one pre-
sented in the main text. In particular, the high-μ applications are
still present, as is the cross-over (fits not shown). This demonstrates
explicitly that the high-μ regime is not simply produced by appli-
cations that have a large number of installations for t < 0, that is,
before the start of data collection.

SI Section 6: Facebook and Facebook Applications. Here we provide
a brief description of the platform (Facebook) and the studied
cultural products (Facebook applications).
Facebook. Facebook is a social networking website operated by
Facebook. At the time of data collection (June 25 to August 14,
2007), Facebook had approximately 50 million active users world-
wide. However, at the time of writing, the site had more than 500
million users worldwide, reflecting the quickly growing popularity of
the site. Since September 2006, anyone age 13 and over with a valid
email address has been able to become a Facebook user. Facebook
users, in linewithother socialnetworkingsites, canconstructapublic

or semipublic profile within a bounded system, articulate a list of
other users, “Facebook friends,” with whom they share a connec-
tion, and view and traverse their list of connections and those made
by others within the system. Users can add friends and send them
messages, and update their personal profiles to notify friends about
themselves. Facebook has changed its interface several times, and
the functionality and behavior of the site have also changed
throughout its lifetime, and there is every reason to believe that this
evolution will also continue in the future.
Facebook applications. Facebook launched a framework for software
developers to create applications that interact with core Facebook
features onMay24, 2007. Facebook introduced several applications,
allowing users to send virtual gifts to each other, post free classified
ads, inform their friends about upcoming events, and more. Some
applications include interactivity, which allows users to play games
with their friends. The moves made during the game are saved on
the website, allowing the next move to be made at any later time.
At the time of the data collection, Facebook users could access

an applications page from their profile which, among other things,
provided a list of all available applications rank-ordered by their
popularity. This allowed Facebook users, at any time, to access an
exhaustive list of existing applications. In addition to this “global
signal,” reflecting the aggregate decisions of the user population,
Facebook users could visit the profiles of their friends, which
gave them an unobstructed view of the applications installed by
their friends. In addition, when a user logged onto Facebook, the
system would first present him or her with a “news feed,” which
includes status updates from friends as well as information about
their application installations (but not uninstallations), a practice
that was subsequently discontinued. These two factors, profile
browsing and news feeds, make up the “local signal.”
Adoption of Facebook applications. In our study, we view Facebook
applications as cultural products or technological innovations.We
emphasize that we had no data on the behavior of individuals.
Instead, we had records on the cumulative number of application
installations for each application at multiple points in time. These
data enabled us to monitor every single application installation in
the system with 50 million potential adopters; that is, no appli-
cation installation went unobserved, except for 1% of applications
which were discarded due to data-quality issues. Any Facebook
user could install applications, and although they were free of
charge, it seems that most users avoided installing too many. One
plausible reason for this behavior is that having too many
applications would easily clutter the profile, making some of the
other information less visible to friends viewing the profile.
To give a better idea of the spread of Facebook applications, we

show additional examples of cumulative application adoption
curves in Fig. S6. We have divided the examples into different
panels by hand based on the qualitative nature of their behavior.
For example, applications in the upper left panel seem to have
saturated their growth, and perhaps most closely resemble the
classic S-shaped adoption curves as described, for example, by
the logistic function. The other curves either show distinct
“bumps” in their growth (upper right panel), or continue growing
at different rates (lower panels). Note that pure exponential
growth would appear as a straight upward-sloping line in semi-
logarithmic plots like these. The bumpiness of the curves is most
likely related to the structure of the social network, in particular
its community structure (3, 4), underlying the adoption behavior.
The shapes of the adoption curves underscore the importance of
taking the structures of social connections into account in the
study of diffusion and influence processes.
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Fig. S1. F statistics for breakpoint analysis. (A) The F statistic is smooth and well-behaved for the empirical data and reaches a maximum of F(k) ≈ 1,035 for
observation k = 1,759. This maximum corresponds to a breakpoint at log (μ(1,759)) ≈ 0.36 and separates the data into two regimes characterized by exponents
αI ≈ 0.55 and αC ≈ 0.85 to the left and right of the point, respectively. (B) The F statistic for the synthetic data are very rugged and the resulting maximum is
effectively degenerate. This irregular behavior of the F statistic violates the underlying assumption of having a well-defined maximum and, consequently, does
not provide sufficient statistical evidence for introducing a breakpoint in the data.
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Fig. S2. Total activity F(t) as a function of time t, where a unit of time is one observation, corresponding to calendar time from June 25 to August 14, 2007.
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Fig. S4. Ensemble average of the SD of the time-shifted activity, h(τ), has a fixed dependence on the ensemble average of the time-shifted activity, g(τ),
throughout the lifetime of applications. The different points correspond to different values of τ ∈ 50,60,70,. . .,1,000 such that increasing the value of τ leads to
increasing values of g(τ). The values of τ start at 50 because we required that for each application there should be at least 50 points in the time series to
estimate its first and second moments sufficiently accurately.
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Fig. S3. Time-shifted aggregate numbers of application installations ni(ti + τ) as a function of application lifetime τ (Upper) and the related time-shifted
activity values gi(τ) (Lower). For purposes of visualization, in both plots are included a subset of 100 applications.
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Fig. S5. Fluctuation scaling plot for activity fi using only those applications i that were introduced during the studied time period and for which we had at
least 50 time steps worth of data.
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Fig. S6. Examples of adoption curves, that is, the cumulative number of application adoptions by a given time. The different panels group together appli-
cations exhibiting similar growth patterns.
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