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1 Supplementary Methods 
 
 

1.1 Rule-based compilation of allosteric models 
 
The aim of this section is to specify ANC’s rule-based modelling framework in sufficient detail so that the reader 
can infer the set of biochemical equations and rates which ANC generates given a model. 
 

1.1.1 Constituents of an ANC model 
 
An ANC model comprises a set of components, a set of structures, a set of rules, and a set of initial conditions. 
Auxiliary modelling constructs also allow the user to specify input waveforms, network readouts, and various 
options. These auxiliary constructs are fully discussed in the ANC User Manual available online 
(http://swainlab.ed.ac.uk/anc). 

1.1.1.1 Components 

 
An ANC model comprises a set of named, typed and re-usable components which are used to build structures. A 
component’s type determines its role within a structure and which class of biochemical reactions apply to it. Table 1 
lists each type of component, its graphical symbol and associated attributes. 
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Table 1: Component types and attributes.  
 
Type Graphical symbol Attributes Notes 
Interaction sites 
Binding site 

 

name Participates in reversible binding reactions. The 
binding site’s name must distinguish it from 
other interaction sites. 
 

Catalytic site 

 

name Acts as the catalytic site in enzyme reactions. 
The catalytic site’s name must distinguish it 
from other interaction sites. 

Modification site 

 

name Acts as the substrate in enzyme reactions. The 
modification site’s name must distinguish it 
from other interaction sites. 

Hierarchical components 
Hierarchical component 

 

name A modular element, is used to “contain” other 
components in a structure, and can be composed 
to create modular structures. Each hierarchical 
site has a unique name to distinguish it from 
other hierarchical or allosteric components. 

Allosteric component name, 
R_state_label, 
T_state_label, 
k_RT, 
k_TR 

Dual role as a hierarchical and allosteric 
component capable of adopting one of two 
allosteric states. Each allosteric component has a 
unique name to distinguish it from other 
hierarchical or allosteric components. The other 
attributes, which may optionally be included in 
the graphical symbol, are labels for the reference 
state and the non-reference state (defaulting to R 
and T), and baseline allosteric transition rate 
constants.  
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1.1.1.2 Structures 

 
An ANC model comprises a set of named structures. As shown in the example of Figure 1, an ANC-structure is a 
named, labelled and partially directed graph comprising a set of nodes and edges linking the nodes. Each node is 
associated with a component, whose graphical symbol is used when drawing the structure. Nodes are labelled, and 
therefore distinguishable, by the name and type of their associated components. Through the association of each 
node with a component, a structure models the relationship between the components of biomolecules (this 
association also allows us to use the terms “node” and “component” interchangeably in most contexts). Edges, 
which may be directed, are labelled and distinguishable according to the edge type and (for allosteric couplings) 
interaction parameters. Table 2 describes each type of edge used to build a structure. Nodes and edges are not 
necessarily unique – indeed, multiple nodes may be associated with the same component to model, for example, 
identical binding sites or subunits. 
 

 
Figure 1: Example structure. This structure models a hypothetical protein H. The structure’s name is underlined to distinguish 
it from the names of its components. Protein H has two allosteric domains, α and β, undergoing sequential transitions. The 
modifiers of domain α are a ligand binding site AX, a phosphorylation site Y, and the conformational state of domain β. Domain β 
is regulated by a binding site AY and by the state of the domain α. The allosteric coupling between α and β subunits consists of 
two directed edges because, while thermodynamics imposes that the regulatory factor Γab is the same in both directions, the Φ-
values characterizing the effect of each subunit’s conformational state on the other’s transition kinetics can be different.  
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Table 2: Structure edges. 
 
Type Graphical 

symbol 
Label Notes 

Edges 
Containment edge  None A containment edge can only be drawn from a hierarchical (or 

allosteric) node, but can point to any other node type. 
Binding edge  None A binding edge can only be drawn between two interaction 

sites, and represents a non-covalent bond between these sites. 
Allosteric coupling edge 
(from modifier to allosteric 
node). 

 Φ or 
Γ, Φ 

When drawn pointing to an allosteric node, means that the 
other node acts as a modifier of the allosteric transition with 
the indicated Φ-value and (if appropriate) regulatory factor Γ. 
If this modifier is an interaction site, the label comprises only 
a Φ-value, since in this case Γ is not a static value but depends 
on the differential affinity of the ligand occupying the binding 
site. If the modifier is a modification site or another allosteric 
component, then the edge is labelled with both Γ and Φ.  
 

Allosteric coupling edge 
(from allosteric node to 
interaction site). 

 None When drawn from an allosteric node to an interaction site, 
means that the interaction site can “see” the conformational 
state of the allosteric node. 

 
Allosteric coupling 
 

  Given that allosteric couplings necessarily come in pairs, for 
convenience each pair of directed edges may be drawn as a 
single undirected edge, as we have done in the main text and 
elsewhere.  
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1.1.1.3 Structure Instances 

 
A user-defined structure can be instantiated to create a structure instance. A structure instance is a copy of the 
instantiated structure to which state information is annotated. As illustrated in Figure 2, this annotation consists of 
appending relevant state information (if any) to the label of each component-associated node. 
 
Structure instances are created when a model is initialized with initial conditions prior to compilation. During 
compilation, new structures and structure instances are dynamically created as needed to represent products of the 
biochemical reactions implied by the model. Generally speaking, structures embody the static, non-changing 
attributes of a biomolecule which are common to all its instances, while instances capture state information that may 
change with time and as a result of a reaction. 
 
 
 

 
Figure 2 Structure instantiation. A structure instance named HT0R of structure H is created by copying the structure H and 
incorporating relevant state information (dotted red circles) to the labelling of each node. During instantiation, the state of each 
allosteric node becomes one of the allosteric state labels defined by the user (in this case, R or T). The state of modification sites 
becomes either 0 (open circle) or 1 (filled circle). All interaction sites also inherit the conformational state of any allosteric nodes 
to which they are coupled. For simplicity, we have drawn the pair of directed allosteric coupling edges connecting α and β as a 
single undirected edge, despite the ambiguity of which Φ-value “points to” which subunit. 

1.1.1.4 Initial Conditions 

 
An ANC model also comprises a set of initial conditions. Each initial condition specifies the following information: 

i) the name of a structure  
ii)  the state of each component in the structure and 
iii)  the initial concentration of the instance (representing a particular chemical species). 

 
During initialization of the model, initial conditions are used to instantiate the associated structures, creating an 
initial set of seed structure instances to which reaction rules are iteratively applied to generate a reaction network. 
The initial concentration specified does not affect network generation but does affect simulation results. 
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1.1.1.5 Rules 

 
An ANC model comprises a set of rules which are created (either explicitly or implicitly) from three pre-defined 
templates, namely a binding rule template, a covalent modification rule template, and an allosteric transition rule 
template (Figure 3). Thus, an ANC model contains the information required to create instances of the rule templates. 
Each rule instance is a copy of a rule template but specifies additional information such as the name and state of the 
components involved and rate constants. 
 
Instances of binding and modification rules (Figure 3A and 3B) are explicitly created by the modeller using ANC 
language constructs. Each binding or covalent modification rule instance comprises an association rule instance and 
a dissociation rule instance. Additionally, the covalent modification rule instance comprises a product rule instance. 
These 3 types of elementary rule instances are used as generators to create binding and enzymatic reactions in a 
biochemical reaction network. 
 
In contrast to the explicit creation of binding rule instances, an instance of the allosteric transition rule template 
(Figure 3C) is automatically created for each allosteric component in a model, without the modeller explicitly 
requesting it. Each allosteric transition rule instance comprises an elementary rule instance for the transition from 
the component’s reference state to its non-reference state, and a second elementary rule instance for the opposite 
transition. These elementary rule instances are used as generators to create allosteric transitions in a reaction 
network. 
 

 
Figure 3: Binding, covalent modification, and allosteric transition rule templates. Rule instances are created from one of 
three pre-defined templates: a binding rule template, a modification rule template, and an allosteric transition template. (A) The 
binding rule template comprises two elementary rules. To create binding rule instances, the modeller supplies the information 
required by the template (dotted red boxes): the name of each interaction site and biochemical rate constants. The modeller may 
also, if desired, specify the state of each interaction site: either the modification state, the conformational state or both. (B) The 
covalent modification rule template is similar to the binding rule template but comprises a third elementary rule corresponding to 
the product reaction of the Michaelis-Menten mechanism. The product rule specifies that the modification state of the substrate 
S_name (represented by a grey dot) is flipped in the product of the reaction (grey dot with an overbar). To create modification 
rules instances the modeller supplies interaction site names, interaction site states, and biochemical rates. Specifying the state of 
the substrate site prior to modification defines what type of enzyme is involved (e.g. if 0, a kinase and if 1, a phosphatase). (C) 
The allosteric transition rule template comprises elementary rules for the transition to and from the reference conformational 
state. The template includes a built-in formula for calculating allosteric transition rates given that N modifiers are present in a 
particular case. ANC automatically creates an instance of the allosteric transition rule template for each allosteric component in a 
model, obtaining from the component’s attributes both labels for the reference and non-reference states (by default, R and T) and 
baseline allosteric transition rates. 
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1.1.2 Biochemical network generation 

 
ANC’s iterative algorithm uses elementary rule instances to generate a biochemical reaction network. To do so, the 
algorithm matches the left-hand side (LHS) of each elementary rule against all the structure instances in the 
network. A match is conditioned by a component’s type, name and state as specified in a rule, but regardless of 
which structure contains the components of the LHS (though additional ad hoc matching conditions can be specified 
– c.f. the ANC User Manual). A rule instance may match a structure instance multiple times if the structure contains 
multiple copies of a component matched by the rule’s LHS. Each distinct match generates a biochemical reaction 
and new structures and structure instances are created to represent the products of the reaction (such as a complex of 
two structures), as appropriate. In a subsequent iteration, the compilation algorithm can match the rules against the 
newly created products, compiling new biochemical reactions until a stopping condition is reached. 

1.1.2.1 Generation of a binding reaction 

Figure 4 illustrates how a binding rule instance is used to generate a reversible binding reaction. 
 

 
Figure 4: Using a binding rule instance to generate a reversible binding reaction. We suppose that the reaction network 
already contains structure instances X and HR1T representing a ligand and a protein. As a pair, these structures are checked against 
the rule instances in the model to see whether a binding reaction can be generated. Two binding rule instances exist for the 
reversible binding of interaction sites X and AX. However, only one of them correctly matches the allosteric state of AX (green 
dotted circles and arrows). The elementary rule instance for association guides the construction of a new structure instance 
representing the protein-ligand complex, and generates a bi-molecular association reaction with the rate constant kfRX. After 
comparing the new structure instance with those already existing in the reaction network to avoid unnecessary duplications, the 
new product structure is assigned a unique name XHR1T. At a later time, the compilation algorithm matches the complex against 
the elementary dissociation rule instance (orange dotted circle and arrow), and generates the dissociation reaction with the rate 
kbRX specified by the rule. 
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1.1.2.2 Generation of a covalent modification reaction 

 
Figure 5 illustrates how a modification rule instance is used to generate a Michaelis-Menten reaction. 
 

 
Figure 5: Using a modification rule instance to generate an enzymatic reaction. We suppose that the reaction network 
already contains structure instances E and HR0T representing a kinase and a protein having a phosphorylation site Y. As a pair, 
these structures are checked against the rule instances in the model to see whether a modification reaction can be generated. The 
interaction sites E and Y (the latter in an unmodified state and R conformation) match the association rule instance comprised by 
the modification rule (green dotted circles). The elementary rule instance for association guides the construction of a new 
structure instance representing the enzyme-substrate complex, and generates a bi-molecular association reaction with the rate 
constant kfEYR. After comparing the new structure instance with those already existing in the reaction network to avoid 
unnecessary duplications, the new product structure is assigned a unique name EHR0T. Next, the compilation algorithm matches 
the complex against the elementary dissociation rule instance (orange dotted circles), and generates the dissociation reaction with 
the rate kbERX specified by the rule. Finally, the compilation algorithm also matches the enzyme-substrate complex against the 
elementary product rule instance (blue dotted circles) and generates a product reaction with rate kpERX. After checking that the 
structure instance doesn’t already exist in the network, the phosphorylated product is assigned the name H1RT. 
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1.1.2.3 Generation of allosteric transitions 

Figure 6 illustrates how the allosteric transitions of the α subunit of protein H are generated when the protein is 
bound to ligand X and given the state of the other components of the protein. 
 

 
Figure 6: Using an allosteric transition rule instance to generate an allosteric reaction. We suppose that the reaction network 
already contains the structure instance for the ligand-protein complex XHR1T, whose α subunit is in state R. The name and state of 
the component matches the LHS of the elementary allosteric transition rule (dotted green circles) and so the compilation 
algorithm generates an allosteric transition to the opposite state. The algorithm creates a new structure instance and, assuming it 
doesn’t already exist in the network, assigns it the name XHT1T. To compute the transition rate constant kRT’ , the baseline rate of 
the transition kRT is multiplied by a factor corresponding to each modifier affecting the transition (red dashed lines). In this 
particular case, there are N=3 modifiers since the interaction site Y is modified (black dot), the β subunit is in its non-reference 
conformational state T, and since the binding site AX is occupied by ligand X. The regulatory factors and Φ-values are obtained 
from the labelling of the allosteric coupling edges of the modifiers, except in the case of the ligand X for which the regulatory 
factor ΓX is the differential affinity of the ligand X to each conformational state. As shown, ΓX is calculated from the rate 
constants of the binding rules shown in Figure 4. Subsequently, the compiler matches the new structure instance XHT1T against 
the T→R elementary rule (blue dotted circles), creates the reverse allosteric transition and calculates the rate constant kTR’  
according to the prescribed formula. 
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1.1.3 Examples of network generation 

 
The aim of this section is to demonstrate, through some concrete examples, how the rule-based framework described 
above is used to generate a model’s reaction network. In each example, a figure gives the structures and rules of the 
model (which the modeller creates in a textual form using ANC language constructs), and a diagram of the reaction 
network implied by the model. Also, each example has a table that lists every reaction generated by the compilation 
algorithm, the reaction’s rate constant, and the rule instance that generated it. References to each rule instance 
specify which elementary rule was used: for binding rules f=association, b=dissociation; for allosteric transitions 
f=transition from reference state, b=transition to reference state. Allosteric transition rate constants are calculated 
according to the prescription of the template with the indicated number of modifiers. 
 
Note that to improve legibility, the names of the structure instances given here (e.g. XATY) may differ from the 
names actually generated by ANC. Also, the specific order in which reactions are listed (and in which new 
structures are generated) may not be identical to the order in which the compilation algorithm generates them, both 
for clarity and because future updates and improvements to the implementation of the algorithm may change this 
order. However, each complete reaction network listed here is identical to that generated by ANC. 
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1.1.3.1 Model of a divalent adaptor protein 

 
The first example is a model of generic, divalent adaptor protein A interacting with two ligands X and Y. As shown 
in Figure 7A and 7B, the model comprises three structures and 4 binding rule instances. Table 3 shows how the 
compilation algorithm applies these rules to create the reaction network shown in Figure 7C. 
 
Note that this model is isomorphic to the “naïve” form of the cubic ternary complex model of a GPCR shown in 
Figure 5 of the main text. 
 

 
 
Figure 7: ANC model of a generic, divalent adaptor protein. A) The model comprises 3 structures named X, A and Y, which 
are instantiated with initial conditions (not shown). B) The binding rule instances R1-R4 are explicitly defined in the model. The 
allosteric transition rule instance A1 is automatically generated by ANC for the allosteric component. C) After application of the 
rules, a biochemical reaction network arises which we represent as a cube whose vertices correspond to the 8 possible states of 
the adaptor protein. The edges represent reversible transitions and we have annotated the equilibrium constants KRT = kRT / kTR, 
KRX = kfRX / kbRX, KTX = kfTX / kbTX, KRY = kfRY / kbRY, KTY = kfTY / kbTY and the regulatory factors ΓX = KTX / KRX and ΓY = KTY / KRY. 
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Table 3: Network generation for a model of a generic, divalent adaptor protein.  
 
This table illustrates how the rule instances in Figure 7 are used by the iterative compilation algorithm to generate 
binding and allosteric reactions, using the rate constants associated with each rule instance, and creating new 
structure instances as needed. 
 
Rule applied Reaction Rate constant New species 

added to 
network 

Notes 

Initialization   AR, X, Y We assume the model defines initial conditions for 
these structure instances (i.e. species). 

A1(f) AR→AT kRT AT A is unligated, so there are no modifiers (N=0). 
A1(b) AT→AR kTR – A is unligated, so there are no modifiers (N=0). 
     
R1(f) AR+X→XAR kfRX XAR Association of AR and X creates complex XAR. 
R1(b) XAR→AR+X kbRX – Dissociation of AR and X. 
R2(f) AT+X→XAT kfTX XAT Association of AT and X creates complex XAT. 
R2(b) XAT→AT+X kbTX – Dissociation of AT and X. 
     
R3(f) AR+Y→ARY kfRY ARY Association of AR and Y creates complex ARY. 
R3(b) ARY→AR+Y kbRY – Dissociation of AR and Y. 
R4(f) AT+Y→ATY kfTY ATY Association of AT and Y creates complex ATY. 
R4(b) ATY→AT+Y kbTY – Dissociation of AT and Y. 
     
R1(f) ARY+X→XARY kfRX XARY Association of ARY and X creates complex XARY. 
R1(b) XARY→ARY+X kbRX – Dissociation of ARY and X. 
R2(f) ATY+X→XATY kfTX XATY Association of ATY and X creates complex XATY. 
R2(b) XATY→ATY+X kbTX – Dissociation of ATY and X. 
     
R3(f) XAR+Y→XARY kfRY – Association of XAR and Y creates complex XARY. 
R3(b) XARY→XAR+Y kbRY – Dissociation of XAR and Y. 
R4(f) XAT+Y→XATY kfTY – Association of XAT and Y creates complex XATY. 
R4(b) XATY→XAT+Y kbTY – Dissociation of XAT and Y. 
     
A1(f) XA R→XAT X

XRTk ΦΓ )(  – N=1 and ΓX = (kfTX / kbTX)/(kfRX / kbRX). 

A1(b) XAT→XAR 1)( −ΦΓ X
XTRk  –  

A1(f) ARY→ATY Y
YRTk ΦΓ )(  – N=1 and ΓY = (kfTY / kbTY)/(kfRY / kbRY). 

A1(b) ATY→ARY 1)( −ΦΓ Y
YTRk  –  

A1(f) XA RY→XATY YX
YXRTk ΦΦ ΓΓ )()(  – N=2. 

A1(b) XATY→XARY 11 )()( −Φ−Φ ΓΓ YX
YXTRk  –  
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1.1.3.2 Concerted allosteric model of a tetramer 

 
This example is a model of a tetrameric protein H with a 4-fold axis of symmetry that undergoes concerted allosteric 
transitions and binds ligand L through 4 identical binding sites.  As shown in Figure 8A and 8B, the model 
comprises two structures and 2 binding rule instances. Table 4 explains how the compilation algorithm applies these 
rules to create the reaction network shown in Figure 8C. 
 
 

 
 
Figure 8: Concerted allosteric model of a tetrameric protein. A) The model comprises 2 structures named L and H, which are 
instantiated with initial conditions (not shown). B) The binding rule instances R1-R2 are explicitly defined in the model. The 
allosteric transition rule instance A1 is automatically generated by ANC for the allosteric component H. C) Through the 
application of the rules, a biochemical reaction network is generated in which 5 occupancy states exist for each conformation of 
the protein. The affinity of each conformation of the tetramer to the ligand changes according to how many binding sites are 
occupied, and the allosteric equilibrium constant is also a function of the occupancy state. However, the affinity of a particular 
subunit remains independent of the occupancy state. Edges represent reversible transitions and we have annotated the equilibrium 
constants KRT = kRT / kTR, KRL = kfRL / kbRL, KTL = kfTL / kbTL, and the regulatory factor ΓL = KTL / KRL.  
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Table 4: Network generation for a concerted allosteric model of a tetramer.  
 
This table illustrates how the rule instances in Figure 8 are used by the iterative compilation algorithm to generate 
binding and allosteric reactions, using the rate constants associated with each rule instance, and creating new 
structure instances as needed. 
 
Rule applied Reaction Rate constant New species 

added to 
network 

Notes 

Initialization   HR, L We assume the model defines initial conditions for 
these structure instances (i.e. species). 

A1(f) HR→HT kRT HT H is unligated, so there are no modifiers (N=0). 
A1(b) HT→HR kTR – H is unligated, so there are no modifiers (N=0). 
     
R1(f) HR+L→HRL kfRL HRL Association of HR and L creates HRL. 
R1(f) HR+L→HRL kfRL  2nd match for association rule. 
R1(f) HR+L→HRL kfRL  3rd match for association rule. 
R1(f) HR+L→HRL kfRL  4th match for association rule. 
R1(b) HRL→HR+L kbRL – Dissociation of HR and L. 
R2(f) HT+L→HTL kfTL HTL Association of HT and L creates HTL. 
R2(f) HT+L→HTL kfTL  2nd match for association rule. 
R2(f) HT+L→HTL kfTL  3rd match for association rule. 
R2(f) HT+L→HTL kfTL  4th match for association rule. 
R2(b) HTL→HT+L kbTL – Dissociation of HT and L. 
     
R1(f) HRL+L→HRL2 kfRL HRL2 Association of HR L and L creates HRL2. 
R1(f) HRL+L→HRL2 kfRL  2nd match for association rule. 
R1(f) HRL+L→HRL2 kfRL  3rd match for association rule. 
R1(b) HRL2→HRL+L kbRL – Dissociation of HR and L. 
R1(b) HRL2→HRL+L kbRL – 2nd match for dissociation rule. 
R2(f) HTL+L→HTL2 kfTL HTL2 Association of HT L and L creates HTL2. 
R2(f) HTL+L→HTL2 kfTL  2nd match for association rule. 
R2(f) HTL+L→HTL2 kfTL  3rd match for association rule. 
R2(b) HTL2→HTL+L kbTL – Dissociation of HT and L. 
R2(b) HTL2→HTL+L kbTL – 2nd match for dissociation rule. 
     
R1(f) HRL2+L→HRL3 kfRL HRL3 Association of HR L2 and L creates HRL3. 
R1(f) HRL2+L→HRL3 kfRL  2nd match for association rule. 
R1(b) HRL3→HRL2+L kbRL – Dissociation of HR and L. 
R1(b) HRL3→HRL2+L kbRL – 2nd match for dissociation rule. 
R1(b) HRL3→HRL2+L kbRL – 3rd match for dissociation rule. 
R2(f) HTL2+L→HTL3 kfTL HTL3 Association of HT L2 and L creates HTL3. 
R2(f) HTL2+L→HTL3 kfTL  2nd match for association rule. 
R2(b) HTL3→HTL2+L kbTL – Dissociation of HT and L. 
R2(b) HTL3→HTL2+L kbTL – 2nd match for dissociation rule. 
R2(b) HTL3→HTL2+L kbTL – 3rd match for dissociation rule. 
     
R1(f) HRL3+L→HRL4 kfRL HRL4 Association of HR L3 and L creates HRL4. 
R1(b) HRL4→HRL3+L kbRL – Dissociation of HR and L. 
R1(b) HRL4→HRL3+L kbRL – 2nd match for dissociation rule. 
R1(b) HRL4→HRL3+L kbRL – 3rd match for dissociation rule. 
R1(b) HRL4→HRL3+L kbRL – 4th match for dissociation rule. 
R2(f) HTL3+L→HTL4 kfTL HTL4 Association of HT L3 and L creates HTL4. 
R2(b) HTL4→HTL3+L kbTL – Dissociation of HT and L. 
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R2(b) HTL4→HTL3+L kbTL – 2nd match for dissociation rule. 
R2(b) HTL4→HTL3+L kbTL – 3rd match for dissociation rule. 
R2(b) HTL4→HTL3+L kbTL – 4th match for dissociation rule. 
     
A1(f) HRL → HTL LB

LRTk ΦΓ )(  – N=1 and ΓL = (kfTL / kbTL)/(kfRL / kbRL). 

A1(b) HTL → HRL 1)( −ΦΓ LB
LTRk  –  

A1(f) HRL2 → HTL2 LB
LRTk ΦΓ 2)(  – N=2. 

A1(b) HTL2 → HRL2 )1(2)( −ΦΓ LB
LTRk  –  

A1(f) HRL3 → HTL3 LB
LRTk ΦΓ 3)(  – N=3. 

A1(b) HTL3 → HRL3 )1(3)( −ΦΓ LB
LTRk  –  

A1(f) HRL4 → HTL4 LB
LRTk ΦΓ 4)(  – N=4. 

A1(b) HTL4 → HRL4 )1(4)( −ΦΓ LB
LTRk  –  
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1.1.3.3 Quartic ternary complex model of a G protein-coupled receptor 

 
This example is the quaternary complex model of GPCR activation which is discussed in the main text of this article 
(see Figure 5). As shown in Figure 9A and 9B, the model comprises 3 structures and 8 binding rule instances. Table 
5 explains how the compilation algorithm applies these rules to create the reaction network shown in Figure 9C. 
 

 
Figure 9: Quartic ternary complex model of a GPCR. A) The model comprises 3 structures named L, G and R, which are 
instantiated with initial conditions (not shown). The receptor structure R comprises an extracellular, ligand-binding domain ED 
and an intracellular, G protein-binding domain ID. As shown, the domains are allosterically coupled with regulatory factor Γ and 
we have annotated allosteric equilibrium constants KactL and KactG. For simplicity, the effect of all modifiers on both allosteric 
transitions parameterized by the same Φ-value. B) The binding rule instances R1-R8 are explicitly defined in the model. Rules 
R1-R4 describe the binding of L to each of the 4 conformational states of R. Likewise, R5-R8 describe the binding of G to the 4 
conformational states of R. The allosteric transition rule instances A1 and A2 are automatically generated by ANC when the 
allosteric components ED and ID are defined. To aid comparison with previously published models of GPCR activity and with 
the reaction network in panel C, we show equilibrium constants (shaded gray) as well as rate constants, with the understanding 
that the modeller actually supplies rates. C) Through the application of the rules, a biochemical reaction network is generated in 
which the GPCR has 16 possible ligation and conformational states. Edges represent reversible transitions and we have annotated 
equilibrium constants.  For simplicity, only one s↔t transition is shown. 
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Table 5: Network generation for the quartic ternary complex model of a GPCR.  
 
This table illustrates how the rule instances in Figure 9 are used by the iterative compilation algorithm to generate 
binding and allosteric reactions, using the rate constants associated with each rule instance, and creating new 
structure instances as needed. 
 
Rule applied Reaction Rate constant New 

species 
added to 
network 

Notes 

Initialization   Rsi, L, 
G 

We assume the model defines initial 
conditions for these structure instances 
(i.e. species). 

A1(f) Rsi→Rti kst Rti R is unligated, so there are no modifiers 
(N=0). 

A1(b) Rti→Rsi kts – R is unligated, so there are no modifiers 
(N=0). 

A2(f) Rsi→Rsa kia Rsa R is unligated, so there are no modifiers 
(N=0). 

A2(b) Rsa→Rsi kai – R is unligated, so there are no modifiers 
(N=0). 

A1(f) Rsa→Rta 
ΦΓ )(stk  Rta ID subunit in state a modifies ED 

transition (N=1). 
A1(b) Rta→Rsa 1)( −ΦΓtsk  – ID subunit in state a modifies ED 

transition (N=1). 
A2(f) Rti→Rta 

ΦΓ )(iak  Rta ED subunit in state t modifies ID 
transition (N=1). 

A2(b) Rta→Rti 1)( −ΦΓaik  – ED subunit in state t modifies ID 
transition (N=1). 

     
R1(f) Rsi+L→LRsi kfsiL LRsi Association of Rsi and L creates LRsi. 
R1(b) LRsi→Rsi+L kbsiL – Dissociation of Rsi and L. 
R2(f) Rsa+L→LRsa kfsaL LRsa Association of Rsa and L creates LRsa. 
R2(b) LRsa→Rsa+L kbsaL – Dissociation of Rsa and L. 
R3f) Rti+L→LRti kftiL LRti Association of Rti and L creates LRti. 
R3(b) LRti→Rti+L kbtiL – Dissociation of Rti and L. 
R4(f) Rta+L→LRta kftaL LRta Association of Rta and L creates LRta. 
R4(b) LRta→Rta+L kbtaL – Dissociation of Rta and L. 
     
R5(f) Rsi+G→RsiG kfsiG RsiG Association of Rsi and G creates RsiG. 
R5(b) RsiG→Rsi+G kbsiG – Dissociation of Rsi and G. 
R6(f) Rsa+G→RsaG kfsaG RsaG Association of Rsa and G creates RsaG. 
R6(b) RsaG→Rsa+G kbsaG – Dissociation of Rsa and G. 
R7f) Rti+G→RtiG kftiG RtiG Association of Rti and G creates RtiG. 
R7(b) RtiG→Rti+G kbtiG – Dissociation of Rti and G. 
R8(f) Rta+G→RtaG kftaG RtaG Association of Rta and G creates RtaG. 
R8(b) RtaG→Rta+G kbtaG – Dissociation of Rta and G. 
     
R1(f) RsiG+L→LRsiG kfsiL LRsiG Association of RsiG and L creates LRsiG. 
R1(b) LRsiG→RsiG+L kbsiL – Dissociation of RsiG and L. 
R2(f) RsaG+L→LRsaG kfsaL LRsaG Association of RsaG and L creates LRsaG. 
R2(b) LRsaG→RsaG+L kbsaL – Dissociation of RsaG and L. 
R3f) RtiG+L→LRtiG kftiL LRtiG Association of RtiG and L creates LRtiG. 
R3(b) LRtiG→RtiG+L kbtiL – Dissociation of RtiG and L. 
R4(f) Rta+L→LRtaG kftaL LRtaG Association of RtaG and L creates LRtaG. 
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R4(b) LRtaG→Rta+L kbtaL – Dissociation of RtaG and L. 
     
R5(f) LRsi+G→LRsiG kfsiG  Association of LRsi and G creates LRsiG. 
R5(b) LRsiG→LRsi+G kbsiG – Dissociation of LRsi and G. 
R6(f) LRsa+G→LRsaG kfsaG  Association of LRsa and G creates LRsaG. 
R6(b) LRsaG→LRsa+G kbsaG – Dissociation of LRsa and G. 
R7f) LRti+G→LRtiG kftiG  Association of LRti and G creates LRtiG. 
R7(b) LRtiG→LRti+G kbtiG – Dissociation of LRti and G. 
R8(f) LRta+G→LRtaG kftaG  Association of LRta and G creates LRtaG. 
R8(b) LRtaG→LRta+G kbtaG – Dissociation of LRta and G. 
     
A1(f) LRsi→LRti 

Φ)( tstk α  – R is ligated to L (N=1). 

A1(b) LRti→LRsi 1)( −Φ
ttsk α  – R is ligated to L (N=1). 

A2(f) LRsi→LRsa 
Φ)( aiak α  – R is ligated to L (N=1). 

A2(b) LRsa→LRsi 1)( −Φ
aaik α  – R is ligated to L (N=1). 

A1(f) LRsa→LRta 
ΦΦΓ )/()( atastk αα  – R is ligated to L  and 

ID subunit in state a modifies ED 
transition (N=2). 

A1(b) LRta→LRsa 11 )/()( −Φ−ΦΓ atatsk αα  – R is ligated to L  and 
ID subunit in state a modifies ED 
transition (N=2). 

A2(f) LRti→LRta 
ΦΦΓ )/()( ttaiak αα  – R is ligated to L  and 

ED subunit in state t modifies ID 
transition (N=2). 

A2(b) LRta→LRti 11 )/()( −Φ−ΦΓ ttaaik αα  – R is ligated to L  and 
ED subunit in state t modifies ID 
transition (N=2). 

     
A1(f) RsiG→RtiG 

Φ)( tstk β  – R is ligated to G (N=1). 

A1(b) RtiG→RsiG 1)( −Φ
ttsk β  – R is ligated to G (N=1). 

A2(f) RsiG→RsaG 
Φ)( aiak β  – R is ligated to G (N=1). 

A2(b) RsaG→RsiG 1)( −Φ
aaik β  – R is ligated to G (N=1). 

A1(f) RsaG→RtaG 
ΦΦΓ )/()( atastk ββ  – R is ligated to G  and 

ID subunit in state a modifies ED 
transition (N=2). 

A1(b) RtaG→RsaG 11 )/()( −Φ−ΦΓ atatsk ββ  – R is ligated to G  and 
ID subunit in state a modifies ED 
transition (N=2). 

A2(f) RtiG→RtaG 
ΦΦΓ )/()( ttaiak ββ  – R is ligated to G  and 

ED subunit in state t modifies ID 
transition (N=2). 

A2(b) RtaG→RtiG 11 )/()( −Φ−ΦΓ ttaaik ββ  – R is ligated to G  and 
ED subunit in state t modifies ID 
transition (N=2). 

     
A1(f) LRsiG→LRtiG 

ΦΦ )()( ttstk βα  – R is ligated to L and G (N=2). 

A1(b) LRtiG→LRsiG 11 )()( −Φ−Φ
tttsk βα  – R is ligated to L and G (N=2). 

A2(f) LRsiG→LRsaG 
ΦΦ )()( aaiak βα  – R is ligated to L and G (N=2). 

A2(b) LRsaG→LRsiG 11 )()( −Φ−Φ
aaaik βα  – R is ligated to L and G (N=2). 

A1(f) LRsaG→LRtaG 
ΦΦΦΓ )/()/()( ataatastk ββαα  – R is ligated to L, G  and ID subunit in 

state a modifies ED transition (N=3). 
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A1(b) LRtaG→LRsaG 111 )/()/()( −Φ−Φ−ΦΓ ataatatsk ββαα  – R is ligated to L, G  and ID subunit in 
state a modifies ED transition (N=3). 

A2(f) LRtiG→LRtaG 
ΦΦΦΓ )/()/()( ttattaiak ββαα  – R is ligated to L, G  and ED subunit in 

state t modifies ID transition (N=3). 
A2(b) LRtaG→LRtiG 111 )/()/()( −Φ−Φ−ΦΓ ttattaaik ββαα  – R is ligated to L, G  and ED subunit in 

state t modifies ID transition (N=3). 
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1.2 Derivation of kinetic input-output function 
 
To compute how the kinetics of a component’s allosteric transition are affected by the presence of modifiers, we 
first write the forward and backward kinetic rate constants for the unmodified component in terms of the difference 
in free energy between the transition state (denoted †) and each conformational state [1]: 
 

kTG
RT

RCek /†∆−=  (1a) 
kTG

TR
TCek /†∆−=  (1b) 

 
where kRT is the kinetic rate for transitioning from the R to the T state and kTR is the kinetic rate for transitioning from 
the T to the R state. We write the equilibrium constant of the allosteric transition in the unmodified state as 
 

kTG
RT

RTeK /∆−=  (2) 

 
In the presence of N modifiers, we assume that each modifier, indexed by i, contributes independently to the energy 

of the each conformation and to the energy of the transition state by )(i
RG∆ , )(i

TG∆  and (i)
†G∆  respectively, and 

that the pre-exponential factor C remains constant.  Hence, using a prime to indicate the presence of modifiers, we 
can write: 
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and similarly 
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implying that 
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For convenience, we define a parameter Φi as the ratio of the change in the R→T activation energy and the change in 
the free energy of the transition due to the modifier i: 
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and so the corresponding ratio for the T→R transition is 
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and 
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∏
=
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This equation is also equation (8) in the main text. 
 
1.3 The Ф parameter, linear free energy relationships, and independence 
 
Our definition of Φ is consistent with the definition of a free energy relationship 
 
A common assumption used to determine values for rate-constants is to assume that a variation in the free energy of 
a reaction due to some perturbation generates a proportional variation in the activation energy of the reaction [2]. 
This assumption implies that there is a linear relationship between the activation energy of a reaction and the free 
energy change of the reaction. 
 
Our definition of the parameter Φ is consistent with the assumption of a linear free energy relationship to describe 
the allosteric transition of an unmodified protein and the effects of two modifiers i and j on that allosteric transition 
if and only if Φi=Φj 
 
Suppose a linear free energy relationship does exist. We will show that the relationship implies Φi=Φj. Let the 
constants φ and a parameterize this relationship. The rate-constant for the transition from the R to the T 
conformations of the protein is determined by the activation energy of the transition, and the equilibrium constant 
for the conformational transition is determined by the free energy of the transition. Thus, we have 
 

aKkaKkaKk j
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RTRTRT +=+=+= }{}{}{}{ loglog;loglog;loglog φφφ  (10) 

 

Here we have defined RTk , }{ i
RTk , and }{ j

RTk  as the rates describing the transition from the R to the T state in a 

protein that has no modifier, only the modifier i, and only the modifier j, respectively. RTK , }{ i
RTK , and }{ j

RTK  are 

the corresponding equilibrium constants. For modifier i, the definition of Φi, Eq. (5a), can be re-written as  
 

( )i

RT

i
RT

i

k

k

Γ










=Φ
log

log
}{

 (11) 

 
using Eqs. (3a) and (4). We can include the free energy associated with the allosteric transition of the protein using 

the relationship for a thermodynamic cycle, Eq. (6) of the main text, i.e. iRT
i
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or 
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The imposition of a linear free energy relationship, Eqs. (10), and Eq. (13) for both modifiers i and j implies that 
 

φ=Φ=Φ ji  

 
Alternatively, if we impose Φi=Φj then Eq. (13) implies that a linear free energy relationship exists and is 

parameterized by φ=Φi=Φj and RTRT Kka loglog φ−= . 

 
A linear free energy relationship describing the effect of modifiers applied alone or in combination is equivalent to 
each modifier contributing independently to the kinetics of the allosteric transition with the same value of Φ 
 
If we assume that a linear free energy relationship describes the effects of two modifiers i and j on the allosteric 
transition either alone or in combination, then we expect Eq. (10) to hold and furthermore 
 

aKk ji
RT

ji
RT += },{},{ loglog φ  (15) 

 

where },{ ji
RTk  and },{ ji

RTK  are the R to T rate-constant and the allosteric equilibrium constant of the protein under the 

combined effect of the two modifiers. Using Eq. (6) of the main text, we can write 
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Combining Eqs. (10), (15) and (16) gives 
 

iRT
i
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jRT
j

RT kk Γ+= logloglog }{ φ  (17b) 

jiRT
ji
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and so each modifier contributes independently to the allosteric transition rate, and with the same value of φ. 
 
Conversely, if two modifiers contribute independently to the allosteric transition rate, i.e. given 
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i

RT kk ΓΦ+= logloglog }{  (18a) 

jjRT
j

RT kk ΓΦ+= logloglog }{  (18b) 
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then if we set Φi = Φj = φ in Eq. (18) and let RTRT Kka loglog φ−= we can show using Eq. (16) that 
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aKk j
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and so the existence of a linear free energy relationship. 
 
Extension to multiple modifiers is straightforward. 
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1.4 Validation of ANC using a model of calmodulin 
 
Figure 10: Validation of ANC using a previously 
published model of calmodulin. (A) ANC-structures of  
calmodulin, calcium, and the downstream targets of 
calmodulin – calmodulin-dependent kinase II (CaMKII) 
or protein phosphatase 2B (PP2P) – implementing the 
model of Stefan et al. [3]. Calmodulin undergoes an 
allosteric transition between a low affinity state T and a 
high affinity state R. Calmodulin is a single polypeptide 
with 4 non-identical calcium-binding sites and a 5th 
binding site for downstream targets. All ligands modify 
of the allosteric transition with the same value of Φ. (B) 
Binding rules give the affinity of calcium, CaMKII, and 
PP2P to their binding sites on calmodulin. Rather than 
list 6 sets of rules ad nauseam, we indicate through the 
variables i and Y that the binding rates depend on the 
binding site and target enzyme involved. The affinity of 
both downstream targets to the T state is zero in the 
model of Stefan et al. (C) ANC correctly generates the 
352 uni-directional biochemical reactions given by 
Stefan et al. After exporting the model into Matlab using 
Facile, we simulated the system and measured the 
steady-state Ca2+ occupancy (number of bound sites) of 
calmodulin for various concentrations of Ca2+ both in the 
presence (thick line) and absence (thin line) of 75 µM of 
CaMKII. We use 0.2 µM of calmodulin and the 
parameter values of Stefan et al. Our simulation results 
were consistent with the simulations shown in Fig. 3 and 
4 of Stefan et al. Finally, our simulations also match the 
theoretical occupancy of calmodulin in the absence of 
CaMKII (red circles) which we computed using the 
equation given by Stefan et al. (c.f. Equation 1). 
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2 Supplementary Results 
 
2.1 Mathematical analysis of a generic divalent allosteric protein and two ligands 
 
Here, we analyze the reaction network of Figure 1C of the main article to determine the cooperativity of binding of 
ligands X and Y and also the apparent affinity of the ligands to A. To do so, we must coarse-grain the network by 
summing over the conformational states of A, thus obtaining the 4-state diagram of Figure 2A (inset) of the main 
article, where we have defined the following coarse-grained variables: A=AR+AT, XA=XA R+XAT, AY=ARY+ATY, 
and XAY=XARY+XA TY. We need to calculate the parameters of the coarse-grained model, starting with KX and 
referring to Figures 1 and 2 of the main article: 
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Likewise, 
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For the cooperativity parameter θ: 
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Setting 0=
RTdK

dθ  allows us to solve for the value of KRT that gives the maximum θ, given by 
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2.2 Effect of allosteric cooperativity on the width and maximum response of XAY trimer assembly  
 

 
Figure 11: Effect of allosteric cooperativity on the width and maximum response of XAY timer assembly. This 
plot shows the width and maximal response of each curve in Figure 2A of the main article (as well for curves for 
intermediate values of θ not shown there). The width is measured as the logarithmic half-maximal width and given 
in decades. The maximal response is the maximum value of [XAY] for each curve normalized to maximum for the 
θ=1 curve. 
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2.3 Effect of competitive ligands on the EC50 of ligand in the concerted and sequential models 
 

 
 
Figure 12: Effect of competitive ligands on the EC50 of ligand in the concerted and sequential models. This 
plot shows the effect of the competitive ligands L1, L2 and L3 on the EC50 of ligand L0 (see Figure 4 of the main 
article). The concentration of each competing ligand is normalized to the EC50 of its own occupancy function. The 
EC50 of L0 is normalized to its EC50 in the absence of a competitor. Only L1 decreases the EC50 of L0, and it does 
so only slightly and at low concentrations (inset). For the other competitors the EC50 increased monotonically. 
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2.4 Examples of the allosteric regulation of proteins and receptors by heterogeneous mechanisms 
 
Our modelling framework can describe the allosteric and cooperative interactions ubiquitous in cellular signalling. 
Ligand binding events, phosphorylation and other post-translational modifications, dimerization and receptor 
clustering are all examples of mechanisms that can regulate protein interactions. Our framework unifies and 
simplifies the modelling of such heterogeneous modifiers of protein activity.  
 
For example, dimerization activates the epidermal growth factor receptor (EGFR), a receptor with tyrosine kinase 
activity [4]. Its extracellular domain binds EGF and other ligands, which induces dimerization of the receptor, 
followed by autophosphorylation of specific tyrosines on its cytoplasmic domain.  As shown in Supplementary 
Figure 13A and 13B, we can straightforwardly implement in ANC a simplified two-state model of the agonist-
induced dimerization of the mutant EGFR characterized by Ozcan et al. [5]. 
 
Many proteins are also regulated by a combination of ligand-binding and post-translational modifications. For 
example, the receptors involved in bacterial chemotaxis possess multiple methylation sites whose state of 
methylation modulates transitions between the bacterium’s swimming and tumbling states and so allows adaptation 
to ambient concentrations of chemoattractants. We have implemented a general model of such receptors in ANC 
(Figure 13A and 13B). Our approach combines the models of Asakura and Honda [6] and Barkai and Leibler [7], 
but removes a number of assumptions made to reduce the combinatorial complexity of the system. For instance, we 
need not assume that methylation and de-methylation occurs in a definite order [6] or that the methylation sites are 
identical [7]. Concerted allosteric models of clusters of chemotaxis receptors have also been proposed [8] and can be 
straightforwardly implemented in ANC. 
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Figure 13: Modelling the regulation of receptors by heterogeneous inputs. (A) Epidermal Growth Factor Receptor (EGFR). 
The receptor transitions between an inactive (I) state and an active (A) state and the transition rate is modified by EGF binding or 
dimerization and with the indicated Φ-values. Its ligand has a single receptor-binding component. (B) Two rules specify the rates 
of ligand binding with each state of the receptor and three rules give dimerization rates for each combination of receptor 
conformations (II , IA, and AA). (C) The methyl-accepting chemotaxis (MCP) proteins are receptors with one ligand-binding (LB) 
site for either an attractant or a repellent and 6 methyl-accepting sites.  Gray circles are placeholders for the methylation state. 
Both the ligand-binding site and the methylation sites are modifiers of the allosteric equilibrium between the swim (S) and tumble 
(T) conformations of the receptor. The attractant A binds and favours the S form of the MCP while the repellent R binds and 
favours the T state. Two enzymes, CheR and CheB, methylate and de-methylate the modification sites. Increasing methylation of 
the MCP favours the T state. (D) Rules for the binding of A and R to the LB site and enzymatic rules for methylation and de-
methylation (c.f. Figure 1B of the main article). Rather than list 24 almost-identical rules ad nauseam, we indicate through the 
variables i and Q that the rates of (de)methylation depend both on the the methylation site (given by i), and the conformational 
state of the receptor (given by Q). Naturally, in the textual form of the model each of the 24 rules is given explicitly. 
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2.5 Regulatory complexity 
 
In ANC, regulatory interactions are best modelled using allosteric components, which embody Monod et al.’s 
paradigm of allostery: an allosteric component exists in 2 interconvertible conformational states, and modifiers 
interact non-cooperatively with each state but bias the equilibrium between conformations [9]. Alternatively, with 
ANC or other rule-based tools, regulation can also be modelled in an ad hoc fashion where we explicitly encode 
regulatory logic in rules (e.g. a rule that says to bind Y only if X is bound). 
 
What are the advantages of each method in terms of model complexity? Ad hoc rules appear simpler initially 
because they require less species. As the size of the system grows, however, such rules may generate regulatory 
complexity. In an ad hoc, interaction-centric approach, we generally cannot make any a priori assumptions to 
simplify a model, such as a particular mechanism for allostery or that some ligated states are not significantly 
populated. We must therefore specify affinity and cooperativity parameters for a combinatorial number of ligated 
states. In ANC, however, we assume that the protein has only two conformations and that a ligand's affinity depends 
only on the conformation, and not on the state of ligation of the protein. 
 
2.5.1 Equilibrium analysis 
 
Consider a protein having N binding sites, with each binding site having Lk (k=0..N-1) distinct ligands, and with all 
states of ligation and transitions between ligated states possible. 
 
2.5.1.1 Ad hoc approach 
 
Number of independent parameters  
 
To compute the number of independent parameters (P) involved in building a model of cooperative ligand binding 
for this protein, we first recognize that the reaction network induced by ligand binding has thermodynamic cycles in 
which any equilibrium constant in the cycle can be calculated if the others are known. We proceed to construct the 
reaction network starting from the unligated protein. First consider the binding of a single ligand. Each ligand will 
have a distinct affinity to the unligated protein. Next, each pair of ligands that bind generates a 4-sided 
thermodynamic cycle in which the affinity of each ligand binding to the unligated state is known. In this cycle, an 
independent cooperativity parameter describes how each ligand affects the other's binding and allows the calculation 
of the 2 unknown affinities. For each distinct triplet of ligands, we need only consider three 4-sided cycles to 
generate all states leading to the formation of the tri-liganded protein. The reaction network for these states lies on 
adjacent sides of a cube. We again assign a cooperativity parameter to each cycle. However, since these three cycles 
share sides, only one cooperativity parameter is unique. Thus, knowing the reaction network for any two ligands, we 
can compute the equilibrium constants for the reaction network for three ligands with only a single additional 
cooperativity parameter per triplet of ligands. Similarly, we can compute the reaction network for up to (k+1) 
ligands given only a single cooperativity parameter per (k+1)-tuplet of ligands if we already know the reaction 
network for k ligands. Thus, by induction we can compute P by counting the number of ligand combinations for 
each binding site, each pair of binding sites, each triplet of binding sites etc.  Hence:  
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In the case where Lk=L, P reduces to: 
 

 1 - L)  (1  P N+=  (31) 

 
Number of dependent parameters  
 
The number of dependent parameters may impact on the performance of a rule-based algorithm which has to 
calculate them, and this number will also help determine how many biochemical equations are in the reaction 
network described by a model. 
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Each unique n-tuple of bound ligands has n associated affinity constants giving the affinity of each ligand to the 
corresponding (n-1)-tuple. Thus, the total number of affinity parameters is:  
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and the number of dependent parameters is:  
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For the case wherein Lk=L, we note that since each term of the above summation terms corresponds to singlets, 

pairs, triplets etc. of binding sites, then the kth such summation term has 



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N
individual terms. Therefore:  
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To evaluate this expression, we differentiate the binomial theorem with respect to L and multiply both sides by L:  
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Then comparison with PT yields:  
 

1 - N
T L)  LN(1  P +=  (37) 

 
We can now compute p:  
 

1L)(1)1(1L)(1L)LN(1  P-Pp 1 - NN1 - N
T ++−−=++−+== LLN  (38) 

 
Number of species  
 
We have Lk+1 occupancy choices at each of N binding sites, and so the number of species S is 
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In the case where Lk=L, we have that S = (L + 1)N. 
 
2.5.1.2 ANC approach 
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Following Monod et al., we assume that the protein undergoes concerted transitions between two conformational 
states and that the affinity of ligands depends only on the conformer they bind. Therefore, the number of 
independent parameters consists of 2 affinity parameters per ligand, plus an allosteric equilibrium parameter: 
 
Number of independent parameters 
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If the number of ligands is the same for each site (Lk=L), then P reduces to 
 

12 += NLP  (41) 
 
Number of dependent parameters 
 
The only dependent parameters are the allosteric equilibrium parameters which are associated with each ligated state 
of the protein.  They are dependent because they can be calculated by considering the thermodynamic cycles 
induced by ligand binding.  Indeed, the calculation for a given ligation state is to multiply the baseline (unligated) 
allosteric equilibrium constant with the ratio of the affinities of each ligand to the 2 conformers of the protein. Hence 
the number of dependent equilibrium parameters is equal to the number of ligated states: 
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As before, in the case that Lk=L, 
 

1)1( −+= NLp  (43) 

 
Number of species 
 
Since there are two conformers per occupancy state, the number of species is double that obtained for the ad hoc 
case. 
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In the case where Lk=L, we have that S = 2(L + 1)N. 
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2.5.2 Including kinetic rates 
 
For this analysis, we assume that all the relevant equilibrium affinities are known.  
 
2.5.2.1 Ad hoc approach 
 
One independent kinetic rate must be specified for each equilibrium constant. Therefore the number of independent 
kinetic parameters Q  is 
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If L k = L then  
 
Q = LN(1 + L)N − 1  (51) 
 
2.5.2.2 ANC approach 
 
We assume that not only the affinity but also the association and dissociation kinetic rate constants associated with 
each ligand depend only on the protein's conformation. We also need one kinetic parameter for each allosteric 
transition. Hence, the number of independent kinetic parameters required is (assuming equilibrium parameters are 
known):  
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If L k = L, this is:  
 
Q = 2NL + (1 + L)N  (53) 
 
If we further assume that each ligand contributes independently to the kinetics of the allosteric transition, which we 
can then compute for any ligated state given a Φ parameter associated with each ligand. Then, the expression for Q 
becomes:  
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Again, if Lk = L, this is:  
 
Q = 3NL + 1  (55) 
 
We note that this assumption of independence allowed us to drop from a combinatorial number of kinetic parameters 
to a linear one.  
 
Finally, a standard assumption of the effect of orthosteric ligands on allosteric kinetics is that a linear free energy 
relation exists between the free energy change in the allosteric equilibrium and the free energy of the transition state. 
This relationship implies that only a single Φ parameter needs to be specified for orthosteric ligands. Under this 
assumption, the number of independent rate constants drops to:  
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With Lk = L, we obtain:  
 
Q = 2NL + 1 + N (57) 
 
2.5.3 Discussion of regulatory complexity 
 
We have analyzed the regulatory complexity of a protein having N binding sites indexed by k and Lk ligands binding 
at each site.  We did so for the interaction-centric, ad hoc approach, in which we made no assumptions concerning 
the underlying mechanism for cooperative binding of ligands, and for ANC’s approach, where we assumed a two-
state model and that ligands interact independently with a protein’s conformational states. Table 1 summarizes the 
results of our analysis, giving both the combinatorial and regulatory complexity for the cases we analyzed. We see 
that the number of independent equilibrium and kinetic parameters scales combinatorially in the ad hoc approach, 
but only linearly in ANC.  Nevertheless, the number of states of the protein, or its combinatorial complexity, 
doubles in ANC. In Table 2, we put in numbers to show that the ad hoc approach is advantageous only for 
monovalent proteins or divalent proteins with at most two ligands. 
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2.5.4 Summary of regulatory complexity analysis 
 
Table 6 - Summary of Equations from Regulatory Complexity Analysis 
 
Case No. Species and Equilibrium Params 

(Ad Hoc) 
No. Species and 
Equilibrium Params 
(ANC) 

No. Kinetic Params (Ad hoc) No. Kinetic Params (ANC) 

General case: 
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With LFER assumption: 
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General case 
with Lk=L 

S = (L + 1)N 

 1 - L)  (1  P N+=  

1L)(1)1(p 1 - N ++−−= LLN  

S = 2(L + 1)N 
12 += NLP  

1)1( −+= NLp  

Q = LN(1 + L)N − 1 Q = 3NL + 1  
 
With LFER assumption: 
 
Q = 2NL + 1 + N  
 

Below, we evaluate the general formulas for two useful special cases 
Special case #1: 
 
N-valent, L=1 

S = 2N 
P = 2N − 1  
p = (N − 2) * 2N − 1 + 1 
 

S = 2N + 1  
P = 2N + 1  
p = 2N − 1  

Q = N2N − 1  
 

Q = 3N + 1  
 

Special case #2: 
 
Bi-valent (N=2) 
 

P = L0 + L1 + L0L1  
p = L0L1  
S = (L0 + 1)(L1 + 1)  
 
If L k=L:  
 
P = 2L + L2  
p = L2  
S = (L + 1)2  

P = 2(L0 + L1) + 1  
p = L0 + L1 + L0L1  
S = 2(L0 + 1)(L1 + 1)  
 
If L k=L:  
 
P = 4L + 1  
p = (1 + L)2 − 1  
S = 2(L + 1)2  

Q = 2(L2 + L)  
 

Q = 6L + 1  
 
With LFER assumption:  
 
Q = 4L + 3  
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2.5.5 Comparison of interaction-centric and biomolecule-centric approaches 
 
Table 7: Comparison of Interaction-Centric and Biomolecule-Centric Approaches  
 
This table uses the formulas in Table 1 for the general case with Lk=L to illustrate regulatory complexity of an N-
valent protein given various values of L and N. The ad hoc approach is more parsimonious in parameters only for 
divalent proteins with at most 2 orthosteric ligands per site (orange boxes). 
 

Number of equilibrium parameters required by 
ah hoc approach  

Number of kinetic parameters required by ah hoc 
approach 

 L       L     

N 1 2 3 4 5  N 1 2 3 4 5 

1 1 2 3 4 5  1 1 2 3 4 5 

2 3 8 15 24 35  2 4 12 24 40 60 

3 7 26 63 124 215  3 12 54 144 300 540 

4 15 80 255 624 1295  4 32 216 768 2000 4320 

5 31 242 1023 3124 7775  5 80 810 3840 12500 32400 

6 63 728 4095 15624 46655  6 192 2916 18432 75000 233280 

             
Number of equilibrium parameters required by 
ANC approach  

Number of kinetic parameters required by ANC 
approach 

 L       L     

N 1 2 3 4 5  N 1 2 3 4 5 

1 3 5 7 9 11  1 4 7 10 13 16 

2 5 9 13 17 21  2 7 13 19 25 31 

3 7 13 19 25 31  3 10 19 28 37 46 

4 9 17 25 33 41  4 13 25 37 49 61 

5 11 21 31 41 51  5 16 31 46 61 76 

6 13 25 37 49 61  6 19 37 55 73 91 

             

Number of excess equilibrium parameters of ad 
hoc approach over ANC approach  

Number of excess kinetic parameters of ad hoc 
approach over ANC approach 

             

 L       L     

N 1 2 3 4 5  N 1 2 3 4 5 

1 -2 -3 -4 -5 -6  1 -3 -5 -7 -9 -11 

2 -2 -1 2 7 14  2 -3 -1 5 15 29 

3 0 13 44 99 184  3 2 35 116 263 494 

4 6 63 230 591 1254  4 19 191 731 1951 4259 

5 20 221 992 3083 7724  5 64 779 3794 12439 32324 

6 50 703 4058 15575 46594  6 173 2879 18377 74927 233189 
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2.6 Derivation of QTC to CTC mapping functions 
 
Here we derive the mapping functions for the projection of our quartic ternary complex model onto Weiss et al.’s 
cubic ternary complex model. The states of the cubic model are: (Ri, Ra), while the quartic model has (Rsi, Rti, Rsa, 
Rta).  Each model’s parameters are given in Figure 5 in the main article. We define a mapping where Ri=Rsi+Rti and 
Ra=Rsa+Rta.  Given this mapping, we wish to express the parameters of the cubic model in terms of those of the 
quartic model.  We start with the allosteric equilibrium parameter Kact, which is the ratio of unligated Ra and Ri: 
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Next, Ka is the ratio of ligated and unligated Ri (the superscript L indicates a ligated state): 
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Similarly, Kg is 
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The differential affinity, α, of L for each state: 
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And similarly, the differential affinity β: 
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For the binding cooperativity parameter, γ, the affinity of G to L
iR is (γ Kg), hence: 
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For the activation cooperativity parameter, δ, the equilibrium between LG
iR and LG

aR is given by actKδαβ , 

therefore: 
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2.7 ANC Model of Adaptor Protein 
 
Below is the complete model of the adaptor protein of Figure 1C in the main article (and Figure 7 of this document) 
in a textual form suitable for input to ANC. This model and others mentioned in this work are available online at 
http://swainlab.bio.ed.ac.uk/anc. 
 
################################################### ########################## 
# File: adaptor_generic.mod 
# 
# This example consists of a generic, divalent adap ter protein A  
# with an input binding site (AX) and an output bin ding site (AY). 
# 
# When unliganded, the adapter protein prefers the low-affinity (R) state. 
# A modulator X binds to the input site of the adap ter more strongly  
# in its high-affinity (T) form than in its R form,  changing the  
# allosteric equilibrium in favour of the active fo rm  
#  
# Likewise, the target protein Y binds the adapter weakly in  
# its low-affinity form, but strongly in its high-a ffinity form. 
# 
# Thus, X and Y bind with positive cooperatively to  the adaptor. 
# 
################################################### ########################## 
 
################################### 
MODEL: 
################################### 
 
#-------------------------------------------------- --- 
# COMPILE PARAMETERS 
#-------------------------------------------------- --- 
$max_species = -1; 
 
#-------------------------------------------------- --- 
# MODEL PARAMETERS 
#-------------------------------------------------- --- 
# ALLOSTERY 
Parameter : { 
 name => "kf_RT", 
 value => 0.1, 
} 
Parameter : { 
 name => "kb_RT", 
 value => 100.0, 
} 
Parameter : { 
 name => "Phi_X", 
 value => 0.5, 
} 
Parameter : { 
 name => "Phi_Y", 
 value => 0.5, 
} 
 
# LIGAND BINDING 
Parameter : { 
 name => "kf_RX", 
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 value => 1.0, 
} 
Parameter : { 
 name => "kb_RX", 
 value => 10.0, 
} 
Parameter : { 
 name => "kf_TX", 
 value => 10.0, 
} 
Parameter : { 
 name => "kb_TX", 
 value => 1.0, 
} 
Parameter : { 
 name => "kf_RY", 
 value => 0.01, 
} 
Parameter : { 
 name => "kb_RY", 
 value => 1.0, 
} 
Parameter : { 
 name => "kf_TY", 
 value => 1.0, 
} 
Parameter : { 
 name => "kb_TY", 
 value => 0.01, 
} 
 
#-------------------------------------------------- --- 
# ADAPTOR PROTEIN 
#-------------------------------------------------- --- 
ReactionSite: { 
 name => "AX", 
 type => "bsite", 
} 
ReactionSite: { 
 name => "AY", 
 type => "bsite", 
} 
AllostericStructure: { 
 name => A,  
 elements => [AX, AY], 
 allosteric_transition_rates => [kf_RT, kb_RT], 
 allosteric_state_labels => ['R','T'], 
 Phi => [Phi_X, Phi_Y], 
} 
 
#-------------------------------------------------- --- 
# LIGANDS X and Y 
#-------------------------------------------------- --- 
ReactionSite : { 
 name => "X", 
 type => "bsite", 
} 
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Structure: {name => X, elements => [X]} 
 
ReactionSite : { 
 name => "Y", 
 type => "bsite", 
} 
Structure: {name => Y, elements => [Y]} 
 
#-------------------------------------------------- --- 
# RULES 
#-------------------------------------------------- --- 
CanBindRule : { 
 ligand_names => ['X', 'AX'], 
 ligand_allosteric_labels => ['.', 'R'], 
 kf => kf_RX, 
 kb => kb_RX, 
} 
 
CanBindRule : { 
 ligand_names => ['X', 'AX'], 
 ligand_allosteric_labels => ['.', 'T'], 
 kf => kf_TX, 
 kb => kb_TX, 
} 
 
CanBindRule : { 
 ligand_names => ['Y', 'AY'], 
 ligand_allosteric_labels => ['.', 'R'], 
 kf => kf_RY, 
 kb => kb_RY, 
} 
 
CanBindRule : { 
 ligand_names => ['Y', 'AY'], 
 ligand_allosteric_labels => ['.', 'T'], 
 kf => kf_TY, 
 kb => kb_TY, 
} 
 
#-------------------------------------------------- --- 
# PROBES 
#-------------------------------------------------- --- 
 
Probe : { 
 name => "TRIMER", 
 classes => ComplexInstance, 
 filters => [ 
   '$_->get_num_elements() == 3', 
        ], 
} 
 
Probe : { 
 name => "AX_DIMER", 
 classes => ComplexInstance, 
 filters => [ 
   '$_->get_num_elements() == 2', 
   '$_->get_exported_name() =~ /A.*X/', 
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        ], 
} 
 
Probe : { 
 name => "AY_DIMER", 
 classes => ComplexInstance, 
 filters => [ 
   '$_->get_num_elements() == 2', 
   '$_->get_exported_name() =~ /A.*Y/', 
        ], 
} 
 
Probe : { 
 name => "A", 
 classes => ComplexInstance, 
 filters => [ 
   '$_->get_num_elements() == 1', 
   '$_->get_exported_name() =~ /A/', 
        ], 
} 
 
Probe : { 
 name => "RESPONSE", 
 classes => ComplexInstance, 
 filters => [ 
   '$_->get_exported_name() =~ /A.*Y/', 
        ], 
} 
 
Probe : { 
 structure => X, 
} 
Probe : { 
 structure => Y, 
} 
 
#-------------------------------------------------- --- 
# INITIAL CONDITIONS 
#-------------------------------------------------- --- 
# give non-reference state a non-zero IC  
Init : { 
 structure => A, 
 state => '[T,x,x]', 
 IC=> 1.0, 
} 
Init : { 
 structure => X, 
 IC => 0.0, 
} 
Init : { 
 structure => Y, 
 IC => 1.0, 
} 
 
#-------------------------------------------------- --- 
# STIMULUS 
#-------------------------------------------------- --- 
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# Clamp X at successively different levels and brin g  
# to steady-state each time. In matlab, the variabl e  
# event_times will give the time at which steady-st ate  
# was reached. 
Stimulus : { 
 structure => 'X', 
 type => "dose_response", 
 strength => 1000, 
 range => [1e-3,1e3], 
 steps => 12, 
 log_steps => 1, 
} 
 
################################ 
CONFIG: 
################################ 
t_final = 100000 
t_vector = [0:1:tf] 
 
matlab_ode_solver = ode15s 
 
 
3 Supplementary References 
 
 
1. Jackson MB (2006) Molecular and cellular biophysics. Cambridge ; New York: Cambridge University Press. xiii, 

512 p. p. 
2. Leffler JE (1953) Parameters for the Description of Transition States. Science 117: 340-341. 
3. Stefan MI, Edelstein SJ, Le Novere N (2008) An allosteric model of calmodulin explains differential activation of 

PP2B and CaMKII. Proc Natl Acad Sci U S A 105: 10768-10773. 
4. Schlessinger J (2002) Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110: 

669-672. 
5. Ozcan F, Klein P, Lemmon MA, Lax I, Schlessinger J (2006) On the nature of low- and high-affinity EGF 

receptors on living cells. Proc Natl Acad Sci U S A 103: 5735-5740. 
6. Asakura S, Honda H (1984) Two-state model for bacterial chemoreceptor proteins. The role of multiple 

methylation. J Mol Biol 176: 349-367. 
7. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387: 913-917. 
8. Sourjik V, Berg HC (2004) Functional interactions between receptors in bacterial chemotaxis. Nature 428: 437-

441. 
9. Monod J, Wyman J, Changeux JP (1965) On the Nature of Allosteric Transitions: A Plausible Model. J Mol Biol 

12: 88-118. 
 
 


