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In what follows we describe a very simple model for the folding of
the cortex. In this model the cerebral cortex is considered to be
a folded GM surface of constant thickness and regular folding
pattern surrounding a regularly folded WM volume or a region-
specific or species-specific deformation thereof that preserves
AW, VW, and VG relative to the idealized model. The volume of
the WM and the surface area of the GM–WM interface are
determined by the amount of axonal volume and total cross-
sectional area needed for a given connectivity with neuronal
soma in the GM. We also assume that the average number of
nonneuronal cells in the WM per unit axon length is constant
across species, a hypothesis that is supported in the literature (1).
Beyond these assumptions, we specifically do not take into

account detailed functional or anatomical information about the
cortical structure, because we are interested in properties (such as
scaling laws) that are common to primate brains varying in size by
a factor of 10,000. As can be seen in the text of the paper, by using
this model one can estimate the scaling laws of various quantities
that cannot be directly measured (such as average axon cross-
sectional area andGMneuron connectivity), and at the same time
the validity of the model can be tested by comparing its prediction
of the relationship between the WM and GM’s folding indexes,
which can be directly measured to empirical data.

The Average Axon Length. White matter is largely composed of
axons connecting neurons in gray matter, along with the glial cells
that support their function. The volume of each axon is simply its
cross-sectional area times its length. If there is no significant
correlation between these two latter quantities, then the total
axonal volume is the average axon cross-section area a, times the
average axonal length l, times the total number of axons (given by
the number of GM neurons,N, times the fraction of such neurons
connected by a myelinated axon in WM, n). The total glial cell
volume is well approximated by the number of nonneuronal cells,
O, times the average WM nonneuronal cell volume, v0. Thus,

VW ¼ nNalþOv0:

Note that we neglect the contribution to the volume of the (small)
number of neuronal cells in WM and of axons not originating or
terminating at the GM.
Experimentally, it can be shown that VW can be obtained as

a power law of either N or O (VW ∝ N1.1 and VW ∝ O1). In the
latter case, and in view of the formula above, the fact that WM
volume increases linearly with O means that the average non-
neuronal cell volume in WM remains approximately constant for
all primates, in line with our previous results (2). Furthermore, it
can also be shown (see ref. 3 for details in a slightly different
context) that for the relation between VW and O (or N) to be
expressed as a power law, the ratio between the volumes of ax-
onal and nonaxonal matter in the WM must also remain con-
stant. We can then write

VW ¼ rnNal

(where r is a constant ratio between axonal volume and VW). If
we assume further that the nonaxonal WM is homogeneously
distributed, then any given cross-sectional area of axons will be
embedded according to the same fixed ratio k to the surrounding
nonaxonal matter. The GM–WM interface area will therefore be
given by

AW ¼ 2:r:n:N:a=p:

The factor p, assumed to be constant, is the weighted (by cross-
sectional area) average value of cos θ, θ being the incidence
angle of each axon into the GM–WM interface. Thus, the av-
erage length of the WM axons is

l ¼ 2:VW=ðp:AW Þ:
Note that an economically built brain (i.e., one folded only as
much as it needs to be to accommodate all its WM axons as tightly
packed as possible) would have p ≈ 1. In any case, p= <1, so VW/
AW can always be taken as a lower bound for l.
Other than the constants r and p, the only parameters de-

scribing the overall structure of the WM that have not been di-
rectly measured or estimated are n and a, respectively the
fraction of neurons in GM with myelinated axons in WM and the
average cross-sectional area of myelinated axons in WM. Note,
however, that in all formulas above they figure only as the
product n.a ∝ AE/N. To obtain the individual scaling rules, one
further assumption must be made.

Scaling of Average Axon Cross-Sectional Area. The average cross-
sectional area a of myelinated axons in the WM can be estimated
on the basis of the assumption about the proportionality between
L and O. Considering that VW ∝ n.N.a.l, we get that a ∝ VW/L ∝
VW/O . Because we show that VW ∝ O, it follows that VW/O is
constant, that is, that a is approximately invariant for primate
brains. The same relationship holds if we consider O to be pro-
portional to total axonal surface S, rather than length. To see that
relationship, consider axons with constant cross-sectional areas
and diameters, such that the total axonal surface is S∝La1/2. It still
holds that a∝VW/L (from themodel) and thatVW∝O (empirically).
If we now assume O ∝ S, then a ∝ S/L ∝ a1/2. Thus, a1/2 ∝ constant.
This result in turn implies thatO is again proportional toL, and thus
the scaling law for n remains the same.

Cortical Folding and Connectivity. Extending the model we in-
troduced above, we now show that the folding index for the surface
of the cortex, FG, is uniquely determined by the value of the
folding index of the WM–GM interface, FW. As we argue in the
text, the axonal connectivity parameters (the total axonal length
and total axonal cross-sectional area) in the WM determine the
amount of folding of theWM–GM interface, which in turn shapes
the folding on the cortical surface.
We start by dividing the total cortical surface AG into two

parts: the smooth exposed surface AE and the convoluted sulci
surfaces emanating from the surface and burrowing toward
the WM, with total area ΔAG (Fig. S1). Because by definition
FG = AG/AE, then

ΔAG ¼ AEðFG − 1Þ:
We also divide the WM–GM interface area into two parts: an
inner core that is reasonably smooth (like the exposed area of
the cortex), with surface area AW0 (the area of a sphere with
volume Vw), and the anti-sulci penetrating the GM, with total
surface area ΔAW.
Assume now that the exposed cortical surface is, to a good

approximation, an isometrically scaled-up copy of the inner WM
core. Then the ratio between their respective surface areas will be
given by the square of the ratio between their characteristic
lengths. Thus,
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AW0 ¼ AEðRW=RÞ2:
We assume, for the sake of simplicity, that GM thickness T does
not vary significantly between neighboring gyri and that the total
cortical area AG is simply the total exposed cortical area AE (the
area of the exposed gyri) plus the area inside each sulcus. Then s
will be the ratio between the cortex radius R and the radius of
what remains once the GM is removed. But the thickness of the
folded layer of GM is clearly h + T, where h is the average depth
of the sulci. Thus, Rw = R – h – T. Furthermore, by the uni-
formity hypothesis, the average distance between adjacent sulci
is 2T. Thus, the total area AG is given by AG = AE + AEh/T. The
folding index FG = AG/AE is then FG = 1 + h/T [it is not nec-
essary to assume the sulci to be perpendicular to the slice: for
a sulcus with incidence angle b, both h and T in the formula
above would acquire identical factors of cos(b) that cancel out].
Thus, we have h = T(FG − 1), and

2Rw ¼ 2R
�
1−

TFG

R

�
:

Thus,

AW0 ¼ AE

�
1−

TFG

R

�2

:

If we now assume a constant GM thickness, then it follows that
sulci and anti-sulci must on average be spaced regularly and also
have equal depths. This assumption implies that ΔAW = ΔAG.
Consider now the expression for FW:

FW ¼ AW0 þ ΔAW

AE
:

By introducing the expressions for AW0 and ΔAW above, we
obtain, at last,

FW ¼ FG þ TFG

R

�
TFG

R
− 2

�
:

In passing, we note that the requirement that the (nondeformed)
GM thickness T be approximately constant may seem too ideal-
ized. We do not claim the cortex is shaped like this, even approx-
imately; but our model remains valid for any area- and volume-
preserving deformation of this idealized cortex. What the model
presupposes therefore is that, on average, real cortices are well
approximated by a deformation of an idealized regular cortex with
constant thickness along its surface. As we shall see, the model’s
predictions for the relation between the two folding indexes are
remarkably accurate when confronted with empirical data.
Finally, because we claim it is the folding of the WM–GM

interface that drives the folding of the cortical surface, it might
perhaps seem more sensible to express FG as a function of FW
and not the other way around. Unfortunately, the resulting ex-
pression is not particularly illuminating. Inverting the formula
above, we find

FG ¼
1þ 2 T

R þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Fig. S1. Schematic representation of a slice of cortex, as indicated in the inset, according to this model. Although this is clearly a simplified view of a complex
surface, it provides accurate estimates of the various surface area measures, allowing us to relate their respective scaling rules to each other. The total cortical
surface area AG, exposed cortical surface area AE and WM-GM interface area SW, as well as the cortical thickness T, average sulci depth h and averageWM axon
length l are indicated.
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Fig. S2. Phylogenetic relationships among species in the dataset; based on Purvis (1).

1. Purvis A (1995) A composite estimate of primate phylogeny. Philos Trans R Soc Lond B Biol Sci 348:405–421.
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Table S2. Average mass and cellular composition of the subcortical white matter

Species MG+W MG MW % MW NG+W OW FG

Tupaia glis (n = 2) 0.705 0.515 ± 0.063 0.190 26.95 21.95 ± 1.60 16.22 1.04
Callithrix jacchus (n = 3) 2.842 2.042 ± 0.120 0.800 28.15 120.33 ± 43.30 74.63 1.18
Otolemur garnetii (n = 2) 3.396 2.556 ± 0.129 0.840 24.74 88.50 ± 14.75 102.89 1.25
Aotus trivirgatus (n = 3) 5.568 3.698 ± 0.663 1.870 33.58 200.32 ± 67.34 170.04 1.36
Callimico goeldii (n = 1) 6.492 3.872 2.620 40.36 178.77 157.13 1.26
Saimiri sciureus (n = 3) 10.646 6.996 ± 0.356 3.650 34.28 645.73 ± 43.74 353.05 1.57
Macaca fascicularis (n = 1) 18.109 10.459 7.650 42.24 400.74 484.40 1.65
Macaca radiata (n = 1) 24.133 15.493 8.640 35.80 829.60 841.38 1.81
Cebus apella (n = 2) 24.180 15.820 ± 4.982 8.360 34.57 930.67 ± 507.78 868.73 1.69
Macaca mulatta (n = 1) 34.530 21.430 13.100 37.94 795.52 945.94
Papio cynocephalus (n = 2) 59.214 36.334 ± 8.233 22.880 36.84 1,420.34 ± 18.07 1,860.00 1.92
Homo sapiens (n = 4) 547.180 285.860 261.320 47.76 7,530 18,480.00

All values are average ± SD and refer to one cerebral cortical hemisphere only. MG+W, mass of the combined GM and WM of the
cerebral cortex (grams); MG, GM mass (grams); MW, WM mass (grams); % MW, relative mass of the WM compared with MG+W; NG+W,
number of neurons in the GM and WM (in millions); OW, number of other (nonneuronal) cells in the WM (in millions); FG, folding index
of the GM (total GM surface/exposed GM surface).

Table S1. Scaling exponents, raw and corrected for phylogenetic relatedness among species in the dataset

Contemporary “tip” species data
Independent
contrasts

Without tree shrew With tree shrew All species

Function Slope
P

value
95% CI,
lower

95% CI,
upper Slope

P
value

95% CI,
lower

95% CI,
upper Slope

P
value r2

MW ∼ MG 1.153 <0.0001 1.057 1.249 1.148 <0.0001 1.073 1.223 1.149 0.0117 0.972
VW ∼ VG 1.190 <0.0001 1.006 1.374 1.184 <0.0001 1.058 1.310 1.162 <0.0001 0.966
MG ∼ N 1.082 <0.0001 0.892 1.273 1.043 <0.0001 0.896 1.190 1.072 0.0010 0.935
MG+W ∼ N 1.142 <0.0001 0.934 1.350 1.097 <0.0001 0.936 1.258 1.125 0.0117 0.921
MW ∼ OW 1.045 <0.0001 0.944 1.147 1.032 <0.0001 0.952 1.112 1.032 0.0117 0.970
MW ∼ N 1.248 <0.0001 1.005 1.491 1.197 <0.0001 1.009 1.385 1.232 0.0117 0.888
OW ∼ N 1.199 <0.0001 1.017 1.381 1.165 <0.0001 1.025 1.305 1.193 0.0010 0.950
AW ∼ VW 0.811 <0.0001 0.745 0.876 0.800 <0.0001 0.754 0.847 0.797 <0.0001 0.982
AW ∼ N 0.900 <0.0001 0.592 1.208 0.873 <0.0001 0.668 1.078 0.852 <0.0001 0.889
AE ∼ VG+W 0.678 <0.0001 0.635 0.721 0.676 <0.0001 0.647 0.706 0.662 <0.0001 0.987
AE ∼ N 0.657 <0.0001 0.409 0.905 0.652 <0.0001 0.488 0.816 0.641 0.0002 0.845
FW ∼ N 0.243 <0.0001 0.170 0.316 0.220 <0.0001 0.168 0.273 0.222 <0.0001 0.926

Slopes refer to least-squares regression of the raw data to power functions (“contemporary tip species data”) or to reduced major
axis regression of log-transformed data to linear functions (independent contrasts), using the PDAP module of the Mesquite software
package. All datasets include data for the human brain. AE, exposed surface area of cerebral cortex; AW,WM–GM interface surface
area; CI, confidence interval; FW, WM folding index; MG, mass of cerebral cortex GM; MG+W, total mass of cerebral cortex; MW, mass of
cerebral cortex WM; N, number of neurons in the cerebral cortex; OW, number of other (nonneuronal) cells in WM; VG, volume of GM;
VW, volume of WM; VG+W, total volume of cerebral cortex.
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