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I. Simplification of the Coupled Equilibrium Constant at Very Low
Voltage.We consider the four different macrostates which contri-
bute to P11. Taking the ratios of the Boltzmann weights of the
macrostates (1,1,1), (1,1,0), and (1,0,1) to zð1;0;0Þ, we get:

zð1;1;0Þ
zð1;0;0Þ ¼ K2 [S1.1]

zð1;0;1Þ
zð1;0;0Þ ¼ K3 [S1.2]

zð1;1;1Þ
zð1;0;0Þ ¼ K2K3θ23 [S1.3]

Both K2 and K3 are small at low voltages (Eq. 1) and, therefore,
the ratios defined in the above equations will become negligible.
In other words, the magnitude of the zð1;0;0Þ term will be much
larger than zð1;0;1Þ, zð1;1;0Þ, and zð1;1;1Þ.

The coupled equilibrium constant for 1st particle would be
expressed as:

ε1 ¼
ðK1K2K3θ12θ23θ13 þ K1K2θ12 þ K1 þ K1½K3θ13�Þ

ð1þ K3 þ K2 þ K2K3θ23Þ
[S2]

Each of the apparent intrinsic equilibrium constants is an expo-
nential function of voltage. Thus ln ε1 would be a highly nonlinear
function of voltage. However, using the simplification described
in Eqs. S1.1, S1.2, and S1.3, the expression for ε1 at very low
voltages would be greatly simplified (Eqs. 9.1 and 9.2).

II. Definition of Particle. For the purposes of our discussion, we use
the word “particle” to signify a specific structural unit of a pro-
tein. A protein is considered to be an ensemble of interlinked
particles. When a site-specific probe is used to monitor the
dynamics of a specific structural unit, the remaining structural
units are considered to be a subspace of the entire ensemble.
χdiff for this specific structural unit reports its net interaction with
the entire subspace. For example, in case of the voltage-gated
sodium channels, when the activation of a specific voltage-sensor
is monitored (say using a fluorescent probe), the remaining struc-
tural units (i.e., all the other voltage-sensors and the pore
domain) constitute the subspace. In a recent study on BK chan-
nels, fluorescent probes were used to monitor the activation of S2
and S4 segments of the voltage-sensing domain separately (1).
When monitoring S2, the rest of the protein forms the subspace.
Thus the definition of particle largely depends on the choice of
the site-specific probe and the knowledge about the conforma-
tional transition that the probe is reporting.

III. Solution for an N -Particle Ensemble.We consider an N-particle
system, in which each of the particles undergoes a voltage-depen-
dent transition from its resting to activated microstate, and each
particle interacts with every other the particle of the system
through four state-dependent interactions as described for the
three particle system. For any particle ‘i’ in this system, we define
the particle matrix,S̄i, which is a 1 × 2 vector, with the intrinsic
chemical factors as its elements,

S̄i ¼ ½ωi0 ωi1 � [S3]

where the intrinsic chemical factor of ‘i’ in a specific conforma-
tion ‘s’ is:

ωis ¼ e−Gisβ [S4]

The system can exist in 2n possible macrostates and therefore, we
can write a 1 × 2n vector where each element represents the in-
trinsic chemical factor of a macrostate of this system. This system
matrix, Λ̄, can be defined as:

Λ̄ ¼⊗n
i¼1 S̄i [S5]

where ⊗ indicates the Kronecker* product of all the particle
matrices. The elements of the system matrix Λ̄ do not include
the contributions of the interaction energies between the parti-
cles. To incorporate the coupling interaction terms, we define
another 1 × 2n coupling vector, C̄, where each element indicates
the stabilization conferred to an individual macrostate of the
system by the pairwise interactions.

To denote every macrostate of thisN-particle system we use an
N-tuple variable νkðxk1;xk2;xk3;…;xkn−1;x

k
nÞ. The components of νk are

xki , (i ¼ 1;2;…;n), which indicate the microstate of the ith particle
in the kth macrostate of the system (k ¼ 1;2;…;2n). xki is 1 or 0
(∀i;k) and indicates whether the ith particle is in the activated or
resting conformation. The kth element of Λ̄ corresponds to the
macrostate νk and can be expressed as:

Λk ¼
Yn
i¼1

ωixki
[S6]

The net coupling factor for the N-particle system in the kth
macrostate will be:

Ck ¼
Yn
i¼1

Yi
j¼1;j≠i

θ
ð1−xki Þð1−xkj Þ
i0 j0

θ
xki x

k
j

i1 j1
θ
ð1−xki Þxkj
i0 j1

θ
xki ð1−xkj Þ
i1 j0

[S7]

Λk and Ck are the kth elements in the system matrix, Λ̄ and the
coupling matrix, C̄ respectively. Thus, the Boltzmann weight of
the kth macrostate, νk, becomes:

zðvkÞ ¼ ΛkCk [S8]

The Boltzmann weights of all the macrostates of the system can
be collectively represented in the form of a 1 × 2n matrix, ζ̄, whose
kth element is zðνkÞ:

ζ̄ ¼ ½zðν1Þzðν2Þzðν3Þ……zðν2n−1Þzðν2nÞ� ¼ ½Λ̄ ∘ C̄� [S9]

where [∘] indicates the Hadamard† product of the two matrices.
The canonical partition function for the entire system is:

Ẑ ¼ ∑
k

zðνkÞ ¼ Λ̄:C̄T [S10]

The probability of the ith particle being in the activated confor-
mation as:

*Consider matrices Ā ¼ ðaijÞ of order m × n and B̄ ¼ ðbklÞ of order p × q. The Kronecker
product of the two matrices is given by Ā ⊗ B̄ ¼ ðaijB̄Þij where aij B̄ is of the order of
p × q and Ā ⊗ B̄ is of the order of mp × nq (2).

†Consider matrices Ā ¼ ðaijÞ and B̄ ¼ ðbijÞ of order p × q. The Hadamard product of the two
matrices is given by ½Ā ∘ B̄� ¼ ðaijbijÞij where aijbij is a scalar and ½Ā ∘ B̄� is of the order of
p × q (2).
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Pi1 ¼
∑
k

xki zðνkÞ

Ẑ
[S11]

And the probability of the ith particle being in the resting con-
formation can be expressed as:

Pi0 ¼
∑
k

ð1 − xki ÞzðνkÞ

Ẑ
[S12]

At extreme potentials these probability terms would also be
dominated by a single macrostate of the system—at low voltages
the macrostate where i is activated and all others are resting
would dominate Pi1, and the macrostate where all particles are
resting would dominate Pi0. At high voltages Pi1 would be domi-
nated by the macrostate where all particles are activated, while
Pi0 would be dominated by the macrostate where only i is resting
and all the others are activated. With these approximations the χ
parameters for i in an N- particle system can be easily derived in
the explicit or normalized forms.

IV. General Expression for the χ Values. At extreme voltages:

ln ε ¼ qFβV þ χ [S13]

qFβ is the slope of the ln ε vs V plot at extreme voltages. Thus
Eq. S13, may be rewritten as:

ln ε ¼
�
∂ ln ε
∂V

�
V þ χ [S14]

Eq. S14 can be converted into an exact differential as:

−
χ

V 2
¼ −

ln ε
V 2

þ 1

V
∂ ln ε
∂V

¼ ∂
∂V

�
ln ε
V

�
[S15]

Thus χ may be expressed as:

χ ¼ −V 2
∂
∂V

�
ln ε
V

�
[S16]

χþ and χ− values are the limiting values of the above expression,
at very high and very low voltages respectively.

For a two-state process, the sum of measured probability of
activation (PA) and measured probability of resting (PR) of a
structural unit will always be unity. Thus the coupled equilibrium
constant can be written as:

ε ¼ PA

1 − PA
[S17]

Using Eqs. S16 and S17 we can easily arrive at Eq. 18.
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Fig. S1. Hypothetical model of a voltage-dependent sodium channel. The model represents a voltage-dependent sodium channel. Particles 1 through 4
represent the four nonidentical voltage-sensing domains of the ion channel, each capable of existing in two conformations: resting (designated as i0)
and activated (designated as i1) (i ¼ 1, 2, 3, or 4). The central pore domain, designated as particle 5, can also exist in two conformations: open (51) or closed
(50). The vertical double-arrowed solid lines represent the intrinsic activation constants for the conformational change of the particles. The diagonal and
horizontal lines represent the microstate dependent pairwise coupling factors between the particles: The diagonal lines indicate the cross-interactions
between particles that are in unlike states, whereas the horizontal lines represent the like interactions between particles in the same microstate. Each of
the voltage-sensing domains is directly coupled to the pore, but none of the voltage sensors interact with each other directly.
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Fig. S2. Change in the χ values (Δχ ¼ χMutant − χWT) of a particle in response to perturbation of differentmodel parameters. Simulations were performed using
the model of sodium channel as described in Fig. S1. Each of the model parameters was perturbed one at a time (while retaining the control values for the rest
of the parameters) and the changes in the values of χ1− (A–E) and χ1þ (F–J), relative to their control (initial) values are shown. Resting-resting and activated-
activated state interactions imply the “like” state interactions between two particles which are in the same microstate. The “resting-activated” interaction
implies the interaction between resting particle 1 and another particle that is activated. The “activated-resting” interaction implies that between an activated
particle 1 and another particle that is resting. The arrows point towards increasing value of the thermodynamic parameter.

Table S1. The parameters and their values used for the numerical
solution of the model sodium channel

Parameter Value

K̂0
1 5

q1 1.5
K̂0

2 10
q2 1.5
K̂0

3 20
q3 2
K̂0

4 1
q4 1
K̂0

5 0.001
q5 0.5
θ10θ50 75
θ11θ50 0.05
θ10θ51 1
θ11θ51 30
θ20θ50 50
θ21θ50 0.05
θ20θ51 0.01
θ21θ51 50
θ30θ50 100
θ31θ50 5
θ30θ51 0.5
θ31θ51 20
θ40θ50 75
θ41θ50 10
θ40θ51 1
θ41θ51 15

These parameters were used to calculate three extreme values of ln ε to
check the parity between the numerical simulations and the expected
(calculated) values of ln ε (and thus the consistency of the simulation
code). The comparison table is provided as Table S2 (XLS).
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