## **Supporting Information**

Liscombe et al. 10.1073/pnas.1009003107



Fig. S1. Aligment of *Catharanthus roseus*  $\gamma$ -tocopherol methyltransferase-like proteins and validated  $\gamma$ -tocopherol methyltransferases. The residue color scheme is as follows: red, identical; green, highly similar; blue, weakly similar; black, different. A blue arrow denotes the transit peptide cleavage site in At $\gamma$ TMT, as predicted by ChloroP (1). The Rubisco large subunit methyltransferase (RubLSMT) consensus motif (2) is indicated by a yellow box, and a black arrow denotes lysine residue of  $\gamma$ -tocopherol methyltransferases that is methylated by RubLSMT.

1. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural networkbased method for predicting chloroplast transit peptides and their cleavage sites. *Protein Sci* 8:978–984. 2. Magnani R, Nayak NR, Mazarei M, Dirk LM, Houtz RL (2007) Polypeptide substrate specificity of PsLSMT. A set domain protein methyltransferase. *J Biol Chem* 282:27857–27864.



Fig. S2. SDS-PAGE analysis of purified recombinant proteins used in assays. (A) Cr2270, (B) Cr1196, and (C) Cr6996. Lanes are labeled as follows: M, marker; C, crude total protein; S, crude soluble protein; E, pure protein elution.

AC PNAS



Fig. S3. NMR spectra for synthetic substrates and standards. (A) <sup>1</sup>H-NMR for (2*R*,3*S*)-2,3-Dihydrotabersonine (DHT) **10**; (*B*) <sup>13</sup>C-NMR for DHT **10**; (*C*) COSY for DHT **10**; (*D*) <sup>1</sup>H-NMR for *N*-methyl-DHT **11**; (*E*) <sup>13</sup>C-NMR for *N*-methyl-DHT **11**.



**Fig. S4.** Michaelis–Menten plots of kinetic data for purified, recombinant Cr2270. Nonlinear regression analysis of kinetic data were used to estimate kinetic parameters for Cr2270 with substrates (A) 2,3-dihydrotabersonine (DHT), and (B) S-adenosyl-L-methionine (SAM). (C) Global fit analysis of inhibition by S-adenosyl-L-homocysteine (SAH) for estimation of  $K_i$ .

A PNAS



Fig. S5. Substrate specificity of purified, recombinant Cr2270. Structures of aspidosperma-, iboga-, and corynanthe-type alkaloids, along with a beta-carboline and a simple indole, tested as substrates with Cr2270. Only 2,3-dihydrotabersonine (DHT, highlighted in green) was accepted as a substrate.



**Fig. S6.** Quantitative real-time PCR analysis of vindoline biosynthetic gene expression in *C. roseus* seedlings after receiving methyl jasmonate treatment 2 d after imbibition. Data are displayed as a relative expression ratio compared to untreated seedlings. Error bars represent SEM from at least three experiments. Abbreviations: T16H, tabersonine 16-hydroxylase; 16OMT, 16-hydroxytabersonine 16-*O*-methyltransferase; D4H, desacetoxyvindoline 4-hydroxylase; DAT, deacetylvindoline acetyltransferase.



**Fig. 57.** γ-Tocopherol inhibits DHT **10** methylation by recombinant Cr2270, but is not turned over by the enzyme. (A) Cr2270-mediated DHT **10** methylation is inhibited by γ-tocopherol ([DHT] = 100  $\mu$ M; [SAM] = 200  $\mu$ M); (B) liquid chromatography-mass spectrometry analysis of the assays in (A) shows that γ-tocopherol ([M-H] m/z 415) is not converted to α-tocopherol ([M-H] m/z 429) by Cr2270.

Table S1. N-Methyltransferase candidates identified from BLAST searches of Catharanthus roseus EST assemblies

| PUT ID    | Similar to functionally characterized protein          | GenBank Accession # | %ID | Predicted full-length ORF? | EST origin*      |
|-----------|--------------------------------------------------------|---------------------|-----|----------------------------|------------------|
| Cr1189    | Resveratrol O-methyltransferase [Vitis vinifera]       | CAQ76879            | 64  | Yes                        | Root             |
| Cr1196    | γ-tocopherol methyltransferase [Arabidopsis thaliana]  | AAD02882            | 52  | No                         | Root             |
| Cr2270    | γ-tocopherol methyltransferase [Arabidopsis thaliana]  | AAD02882            | 42  | No <sup>†</sup>            | Leaf             |
| Cr2551    | Caffeic acid O-methyltransferase [Catharanthus roseus] | AAK20170            | 52  | No                         | Root, flower bud |
| Cr5804    | loganic acid methyltransferase [Catharanthus roseus]   | ABW38009            | 43  | No                         | Root             |
| Cr6424    | Coclaurine N-methyltransferase [Coptis japonica]       | BAB71802            | 51  | No                         | Leaf             |
| Cr6996    | Putative O-methyltransferase [Catharanthus roseus]     | AAR02422            | 100 | Yes                        | CSC              |
| Cr7756    | γ-tocopherol methyltransferase [Arabidopsis thaliana]  | AAD02882            | 45  | No <sup>†</sup>            | Root             |
| Cr7789    | Putative O-methyltransferase [Catharanthus roseus]     | AAR02418            | 100 | Yes                        | CSC              |
| Cr8458    | Flavonoid 4'-O-methyltransferase [Mentha piperita]     | AAR09602            | 50  | No                         | Leaf             |
| Cr3710017 | γ-tocopherol methyltransferase [Arabidopsis thaliana]  | AAD02882            | 47  | No                         | Root, leaf       |
| Cr3910022 | γ-tocopherol methyltransferase [Arabidopsis thaliana]  | AAD02882            | 52  | No                         | Root             |

www.plantgdb.org.

Abbreviations: CSC, cell suspension culture.

\*As per assembly details available at plantgdb.org.

<sup>†</sup>Only missing 5' end predicted to encode a transit peptide.

Table S2. Oligonucleotide primers used in this study

| Primer name  | Sequence (5' to 3')                                 | Purpose                                      |  |
|--------------|-----------------------------------------------------|----------------------------------------------|--|
| 1196-F1      | AAA CTG CCG AGC ACA TCC                             | 3'-RACE                                      |  |
| 2551-F1      | TGT GGA CAA AGC ACA CTT CG                          | 3'-RACE                                      |  |
| 1196-F2      | CAG ATA ATT TTA ACG TCT TGG TGC C                   | 3'-RACE (nested)                             |  |
| 2551-F2      | CAC TTG AAA GAT GCA ATT CTT GAG GG                  | 3'-RACE (nested)                             |  |
| 3'-RACE PCR  | GGC CAC GCG TCG ACT AGT AC                          | 3'-RACE reverse                              |  |
| 1196-F3      | AAA GGA TCC ATG GCA AAA AAA TCA TCA GTA GAA CAA C   | Cr1196 ORF cloning                           |  |
| 1196-R2      | AAA AAG CTT TTA TCT GGG TTT TCG GCA CG              | Cr1196 ORF cloning                           |  |
| 2270F        | AAC ATT AGG ATC CAA AAC ATA CAA CAA TAC AAT GG      | Cr2270 ORF cloning                           |  |
| 2270R        | TTG TAA TCT CGA GTC ATA TTG ATT TTC GTC CC          | Cr2270 ORF cloning                           |  |
| 6996F        | AAC ATT AGG ATC CAT GGA AGT TCA ATC AGC C           | Cr6996 ORF cloning                           |  |
| 6996R        | TTG TAA TCT CGA GTC AAG GAT AAA CTT CAA TAA GAC TCC | Cr6996 ORF cloning                           |  |
| 7789F        | AAC ATT AGG ATC CAT GGA AGT TCA ATC AGT C           | Cr7789 ORF cloning                           |  |
| 7789R        | TTG TAA TCT CGA GTT AAG GAT AAA CCT CAA TAA TAC TCC | Cr7789 ORF cloning                           |  |
| cDNA cloning | GGC CAC GCG TCG ACT AGT ACT TTT TTT TTT TTT TTT TV  | First strand cDNA synthesis for cloning ORFs |  |
| 2270-qF1     | TGA CAA AGT AAC CGG AGC ATG GGA                     | qPCR                                         |  |
| 2270-qR1     | ATC CGA ATG ACG GCA TCT TGG CTA                     | qPCR                                         |  |
| Cr16OMT_qF1  | GCC AAT CCT GCT CTT TCA TAA C                       | qPCR                                         |  |
| Cr16OMT_qR1  | AGC TTT AGA AGG GTG AAC TGG                         | qPCR                                         |  |
| CrD4H_qF1    | TAC CCT GCA TGC CCT CAA CC                          | qPCR                                         |  |
| CrD4H_qR1    | TTG AAG GCC GCC AAT TTG AT                          | qPCR                                         |  |
| CrDAT_qF1    | GAC CTA GTC CTT CCC AAA CG                          | qPCR                                         |  |
| CrDAT_qR1    | CCT CCA TCA GCA ACT TTG TG                          | qPCR                                         |  |
| CrEF1a_qF1   | TCA GGA GGC TCT TCC TGG TGA                         | qPCR                                         |  |
| CrEF1a_qR1   | AGC TCC CTT GGC AGG GTC AT                          | qPCR                                         |  |
| CrT16H_qF1   | AGG ACC TTG TTG ATG TGC TAC                         | qPCR                                         |  |
| CrT16H_qR1   | CAT TGC CCA ATC GAC TGT TG                          | qPCR                                         |  |
| Rbps9_qF1    | TTG AGC CGT ATC AGA AAT GC                          | qPCR                                         |  |
| Rbps9_qR1    | CCC TCA TCA AGC AGA CCA TA                          | qPCR                                         |  |

Table S3. Accession numbers for sequences used to construct neighbor-joining tree

| Abbreviation | Annotation [organism]                                                       | Accession #  |
|--------------|-----------------------------------------------------------------------------|--------------|
| Abpnmt       | Putrescine N-methyltransferase 1 [Atropa belladonna]                        | BAA82264     |
| AtγTMT       | Gamma-tocopherol methyltransferase [Arabidopsis thaliana]                   | AAD02882     |
| AtSMT1       | Sterol 24-C-methyltransferase 1 [Arabidopsis thaliana]                      | NP_001078579 |
| AtSMT2-      | Sterol methyltransferase 2 [Arabidopsis thaliana]                           | NP_173458    |
| AtSMT3       | Sterol 24-C-methyltransferase 3 [Arabidopsis thaliana]                      | NP_177736    |
| AtUCMT       | Uroporphyrinogen III methyltransferase [Arabidopsis thaliana]               | AAB92677     |
| BnγTMT       | Gamma-tocopherol methyltransferase [Brassica napus]                         | ACJ54674     |
| BvCFAPS      | Cyclopropane-fatty-acyl-phospholipid synthase [Burkholderia vietnamiensis]  | YP_001120490 |
| CaDMXNMT     | 3,7-dimethylxanthine <i>N</i> -methyltransferase [ <i>Coffea arabica</i> ]  | BAC75663     |
| CaMXNMT      | 7-methylxanthine N-methyltransferase [Coffea arabica]                       | BAB39216     |
| CbSAMT       | Salicylic acid carboxyl methyltransferase [Clarkia breweri]                 | 34809619     |
| CjCNMT       | Coclaurine N-methyltransferase [Coptis japonica]                            | BAB71802     |
| CjCoOMT      | Columbamine O-methyltransferase[Coptis japonica]                            | Q8H9A8       |
| CjSOMT       | Scoulerine 9-O-methyltransferase [Coptis japonica]                          | BAA06192     |
| Cr16OMT      | 16-hydroxytabersonine O-methyltransferase [Catharanthus roseus]             | ABR20103     |
| CrLAMT       | Loganic acid O-methyltransferase [Catharanthus roseus]                      | ABW38009     |
| CsCafSyn     | Caffeine synthase [Camellia sinensis]                                       | BAB12278     |
| DsPNMT       | Putrescine N-methyltransferase [Datura stramonium]                          | CAE47481     |
| GmSMT1       | Sterol 24-C-methyltransferase 2-1 [ <i>Glycine max</i> ]                    | ACS93763     |
| GmSMT2       | Sterol 24-C-methyltransferase 2-2 [Glycine max]                             | ACS93764     |
| ΗαγΤΜΤ       | Gamma-tocopherol methyltransferase [Helianthus annuus]                      | ABB52798     |
| LePEANMT     | Phosphoethanolamine N-methyltransferase [Solanum lycopersicum]              | AAG59894     |
| LIBANMT      | Beta-alanine N-methyltransferase [Limonium latifolium]                      | AAP03058     |
| MICFAPS      | Cyclopropane-fatty-acyl-phospholipid synthase [Mesorhizobium loti]          | BAB53730     |
| MtPcaA       | Mycolic acid synthase (cyclopropane synthase) [Mycobacterium tuberculosis]  | CAE55286     |
| PfγTMT       | Gamma-tocopherol methyltransferase [Perilla frutescens]                     | AAL36933     |
| PiOMT1       | Ipecac alkaloid O-methyltransferase 1 [Psychotria ipecacuanha]              | BAI79243     |
| Ps4′OMT2     | 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase 2 [Papaver somniferum] | AAP45314     |
| Ps6OMT       | (R,S)-norcoclaurine 6-O-methyltransferase [Papaver somniferum]              | AAQ01669     |
| Ps7OMT       | (R,S)-reticuline 7-O-methyltransferase [Papaver somniferum]                 | AAQ01668     |
| PsCNMT       | Coclaurine N-methyltransferase [Papaver somniferum]                         | AAP45316     |
| PsN7OMT      | Norreticuline-7-O-methyltransferase [Papaver somniferum]                    | ACN88562     |
| PsTNMT       | (S)-tetrahydroprotoberberine-cis-N-methyltransferase [Papaver somniferum]   | AAY79177     |
| RgANMT       | Anthranilate N-methyltransferase [Ruta graveolens]                          | ABI93949     |
| SOPEANMT     | Phosphoethanolamine N-methyltransferase [Spinacia oleracea]                 | AAF61950     |
| TfCNMT       | Coclaurine N-methyltransferase [Thalictrum flavum]                          | AAU20766     |
| ZmUCMT       | Uroporphyrinogen III methyltransferase [Zea mays]                           | BAA11909     |

PNAS PNAS