
Supplemental Material

fig 1

Effect of temperature and detergent on gradient separation of VT1 binding vero cell derived vesicles. a) VT1 binding to vero cell DRM vesicle fractions separated by sucrose gradient centrifugation at 37°C (1), b) Gb₃ content of gradient fraction GSL extract determined by VT1/TLC overlay; c) VT1 binding to vero cell membrane vesicles prepared by shear force(2) rather than detergent resistance, d) Gb₃ content of gradient fraction GSL extract determined by VT1/TLC overlay. The discord between VT1 vesicle binding and Gb₃ vesicle content is maintained at physiological temperature. VT1 bound only to the lighter vesicle fraction A, while Gb₃ is most prevalent in VT1-unbound vesicle fraction B, when DRM vesicles were separated at 37°C rather than 4°C (a,b). Detergent soluble Gb₃ would explain VT1 binding to the more dense, unresolved fractions at the bottom of the gradient. In the absence of detergent (c,d), GSL containing gradient fractions were less well resolved in the gradient, but the discord between VT1 vesicle binding and Gb₃ vesicle content was maintained since VT1 bound fractions (5,6) containing little Gb₃. Thus this discord is not detergent induced.

Supplementary Table 1

Fatty acid content of Gb₃ within sucrose gradient separated vero cell derived vesicles determined by HPLC/tandem mass spectrometry.

	Control vero cells		MCD treated vero cells		Vero cells
	(% total Gb ₃ in fraction)		(% total Gb ₃ in fraction)		
Gb ₃ fatty	Vesicle	Vesicle	Vesicle	Vesicle	membrane
acid	fraction A	fraction B	fraction A	fraction B	Gb_3
C24:0	33.8	31.1	37.2	30.5	30.4
C24:1	23.0	29.4	22.7	26.0	36.2
C22:0	20.8	19.9	17.2	17.1	9.0
C22:1	4.3	5.1	1.9	4.8	4.3
C20:0	1.2	1.4	2.0	0.8	0.5
C18:0	2.6	3.9	6.0	6.0	3.5
C16:0	14.2	8.5	11.8	13.3	15.5

Gb₃ within vesicle fraction A is bound by VT1 whereas vesicle B Gb₃ is refractory. VT1 vesicle B binding is increased after MCD cholesterol extraction. The Gb₃ fatty acid content is similar for fraction A and B vesicles with C24 predominating. The ratio of C24:1/C24:0 is higher in vesicle fraction B. MCD does not affect the fatty acid distribution profile.

Method: N-Palmitoyl-D3-lactosylceramide was used as an internal standard. Samples, calibrator or QC were extracted with 3 mL of chloroform/methanol, 2:1 (v/v). The sample was re-dissolved in methanol and analysed by LC-MS/MS. The chromatographic separation was achieved isocratically with methanol on an Agilent Eclipse XDB C8 column. Electrospray ionisation was conducted in positive mode on a Quattro Ultima mass spectrometer equipped with a Z-Spray ion source. Individual Gb₃ isoforms and the internal standard were detected using the multiple reaction monitoring (MRM) function.

Although the VT1 binding Gb₃ fraction(fraction A) can be separated from the bulk Gb₃ containing vesicles (fraction B) under our conditions, these vesicles colocalize with the bulk GSL containing fractions in the larger scale sucrose gradient separation of DRMs (i.e. in 'fraction 5') used previously(3, 4). Centrifugation efficiency is an inverse function of the k factor = $2.53 \times 10^5 \times \ln(r_{max}/r_{min})/(rpm/1000)^2$

(www.beckmancoulter.com/literature/Bioresearch/0828(DS).pdf). For constant r_{min} , k increases with tube length, explaining the increased resolution we observed.

references

- 1. Chen, X., Jen, A., Warley, A., Lawrence, M. J., Quinn, P. J., and Morris, R. J. (2009) Isolation at physiological temperature of detergent-resistant membranes with properties expected of lipid rafts: the influence of buffer composition, *Biochem J* 417, 525-533.
- 2. Macdonald, J. L., and Pike, L. J. (2005) A simplified method for the preparation of detergent-free lipid rafts, *J Lipid Res* 46, 1061-1067.
- 3. Nutikka, A., and Lingwood, C. (2004) Generation of receptor active, globotriaosyl ceramide/cholesterol lipid 'rafts' in vitro: a new assay to define factors affecting glycosphingolipid receptor activity., *Glycoconj. J. 20*, 22-38.
- 4. Tam, P., Mahfoud, R., Nutikka, A., Khine, A., Binnington, B., Paroutis, P., and Lingwood, C. (2008) Differential Intracellular Trafficking and Binding of Verotoxin 1 and Verotoxin 2 to Globotriaosylceramide-containing Lipid Assemblies, *J Cell Physiol* 216, 750-763.