## SUPPLEMENTAL DATA

Cdc13 N-terminal dimerization, DNA binding and telomere length regulation

Meghan T. Mitchell<sup>1§</sup>, Jasmine Smith<sup>2</sup>, Mark Mason<sup>1§</sup>, Sandy Harper<sup>1</sup>, David W. Speicher<sup>1</sup>, F. Brad Johnson<sup>2</sup> and Emmanuel Skordalakes<sup>1\*</sup>

<sup>1</sup>The Wistar Institute, 3601 Spruce St, Philadelphia, PA 19104

<sup>2</sup>Department of Pathology and Laboratory Medicine, Stellar Chance 405A, 422 Curie Blvd., University of Pennsylvania, Philadelphia, PA 19104, USA

\*Correspondence and requests for materials should be addressed to Emmanuel Skordalakes (<u>skorda@wistar.org</u>).

<sup>§</sup>These authors have contributed equally to this project

## CONTENTS

Supplemental Tables: S1 – S3

Supplemental Figures: S1 – S6

## SUPPLEMENTAL TABLES

|                                    | Native 1        | Native 2       | Hg1            | Hg2                              |
|------------------------------------|-----------------|----------------|----------------|----------------------------------|
| Data collection                    |                 |                |                |                                  |
| Space group                        | P1              | $P2_{1}2_{1}2$ | $P2_{1}2_{1}2$ | P2 <sub>1</sub> 2 <sub>1</sub> 2 |
| Cell dimensions                    |                 |                |                |                                  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å) | 62.0 66.9 68.1  | 62.0 70.2 53.5 | 61.6 71.6 53.7 | 61.5 70.3 53.4                   |
| α, β, γ (°)                        | 116.2 90.3 94.7 |                |                |                                  |
| Resolution (Å)                     | 20-2.5 (2.54-   | 20-2.70 (2.85- | 50-3.30 (3.48- | 40-3.5 (3.69-                    |
|                                    | 2.50)           | 2.70)*         | 3.30)          | 3.5)                             |
| $R_{ m sym}$                       | 5.7 (39.6)      | 5.9 (41.6)     | 8.8 (43.4)     | 16.2 (58.6)                      |
| I/σI                               | 13.8 (2)        | 14.5 (2.5)     | 13.6 (3.2)     | 10.6 (2.5)                       |
| Completeness (%)                   | 93.1 (94.2)     | 96.5 (98.1)    | 99.6 (99.9)    | 98.4 (98.5)                      |
| Redundancy                         | 1.9 (1.9)       | 4.0 (4.1)      | 4.4 (4.6)      | 5.7 (5.9)                        |
| Phasing Analysis                   |                 |                |                |                                  |
| Resolution (Å)                     |                 |                | 40-3 5         | 40-3.8                           |
| Phasing Power                      |                 |                | 2 23/1 51      | 1 92/1 33                        |
| (acent/cent)                       |                 |                | 2.23/1.31      | 1.92/1.99                        |
| R <sub>cullis</sub> (acent/cent)   |                 |                | 0 59/0 63      | 0 63/0 68                        |
| R <sub>cullis</sub> (anom)         |                 |                | 0.85           | 0.91                             |
| Number of sites                    |                 |                | 5              | 5                                |
| Mean figure of                     |                 |                | 0.53           | 0.49                             |
| merit (FOM)                        |                 |                |                |                                  |
| Rafinament                         |                 |                |                |                                  |
| Resolution $(Å)$                   | 20-2 5          | 20-2 70        |                |                                  |
| No reflections                     | 20-2.5          | 6168           |                |                                  |
| $R_{1}/R_{c}$                      | 27030           | 22 9/27 2      |                |                                  |
| No atoms                           | 27.3/20.7       | 22.9727.2      |                |                                  |
| Protein                            | 6376            | 1551           |                |                                  |
| Water                              | 20              | 47             |                |                                  |
| <b>B</b> -factors                  |                 |                |                |                                  |
| Protein                            | 54.7            | 67.9           |                |                                  |
| Water                              | 27              | 79.3           |                |                                  |
| R.m.s deviations                   |                 |                |                |                                  |
| Bond lengths (Å)                   | 0.014           | 0.009          |                |                                  |
| Bond angles (°)                    | 1.295           | 1.279          |                |                                  |
| Ramachandran                       |                 |                |                |                                  |
| plot (%)                           |                 |                |                |                                  |
| Most favored                       | 84.8            | 82.2           |                |                                  |
| Allowed                            | 12.4            | 16.1           |                |                                  |
| Generously allowed                 | 2.8             | 1.7            |                |                                  |

Table S1: Data collection, phasing and refinement statistics

\*Highest resolution shell is shown in parenthesis.

| Name                                | Sequence                                                                    |
|-------------------------------------|-----------------------------------------------------------------------------|
| 11mer                               | GTGTGGGTGTG                                                                 |
| 18mer                               | GTGTGGTGTGGGGTGTGGG                                                         |
| 26mer                               | GTGGGTGTGGGTGGGTGTGGGGTGTG                                                  |
| 37mer                               | GTGTGGGTGTGGGTGTGGGTGTGGGTGTGGGTGTG                                         |
| 43mer                               | GTGGTGGGTGGGTGTGTGTGGGTGGGTGTGGGTGTGGGG<br>TGTG                             |
| Poly(dT) (50mer)                    | (dT)50                                                                      |
| Random ssDNA (43mer)                | TATGAATGAGTTCAAATATTGCACATTGAAATTATATTT<br>TACG                             |
| Random dsDNA                        | GGCACAGTCACGTCGATGCACTAGTCGAGTTTCTTCGGA<br>AACTCGACTAGTGCATCGACGTGACTGTGCC  |
| Telomeric dsDNA                     | CACACCCACACGTCGATGCACTAGTCGAGTTTCTTCGGA<br>AACTCGACTAGTGCATCGACGTGTGGGGTGTG |
| Telomeric dsDNA with 11mer overhang | GTCGATGCACTAGTCGAGTTTCTTCGGAAACTCGACTAG<br>TGCATCGACGTGTGGGGTGTG            |

Table S2: DNA oligonucleotides used in this study

| Strain  | Genotype                                                                      | Reference    |
|---------|-------------------------------------------------------------------------------|--------------|
| YBJ254  | BY4743: $MATa/\alpha$ $his3\Delta 1/his3\Delta 1$ $leu2\Delta 0/leu2\Delta 0$ | Brachmann et |
|         | LYS2/lys2 $\Delta 0$ met15 $\Delta 0/MET15$ ura3 $\Delta 0/ura3\Delta 0$      | al., 1998.   |
| YBJ641  | YBJ254 cdc13A::kanMX/CDC13                                                    | This study   |
| JSY0225 | YBJ641 + pRS415- <i>CDC13</i>                                                 | This study   |
| JSY0226 | YBJ641+ pRS415                                                                | This study   |
| JSY0227 | YBJ641+ pRS415- <i>K73A</i>                                                   | This study   |
| JSY0228 | YBJ641+ pRS415-K75A                                                           | This study   |
| JSY0229 | YBJ641+ pRS415- <i>L</i> 84A                                                  | This study   |
| JSY0230 | YBJ641+ pRS415- <i>I</i> 87A                                                  | This study   |
| JSY0231 | YBJ641+ pRS415-L91A                                                           | This study   |
| JSY0232 | YBJ641+ pRS415-V133A                                                          | This study   |
| JSY0233 | YBJ641+ pRS415- <i>T140A</i>                                                  | This study   |
| JSY0234 | YBJ641+ pRS415-F142A                                                          | This study   |
| JSY0235 | YBJ641+ pRS415- <i>L84A</i> / <i>I</i> 87A                                    | This study   |
| JSY0236 | $cdc13\Delta$ :: $kanMX$ + pRS415-CDC13                                       | This study   |
| JSY0238 | $cdc13\Delta$ :: $kanMX$ + pRS415-K73A                                        | This study   |
| JSY0240 | $cdc13\Delta$ :: $kanMX$ + pRS415-K75A                                        | This study   |
| JSY0242 | $cdc13\Delta$ :: $kanMX$ + pRS415-L84A                                        | This study   |
| JSY0244 | $cdc13\Delta$ :: $kanMX$ + pRS415-I87A                                        | This study   |
| JSY0246 | $cdc13\Delta$ :: $kanMX$ + pRS415-L91A                                        | This study   |
| JSY0248 | $cdc13\Delta$ :: $kanMX$ + pRS415-V133A                                       | This study   |
| JSY0250 | <i>cdc13</i> Δ:: kanMX + pRS415-T140A                                         | This study   |
| JSY0252 | $cdc13\Delta$ :: kanMX + pRS415-F142A                                         | This study   |
| JSY0254 | <i>cdc13Δ:: kanMX</i> + pRS415- <i>L</i> 84 <i>A</i> / <i>I</i> 87 <i>A</i>   | This study   |

 Table S3: Yeast strains used in this study

## SUPPLEMENTAL FIGURES



**Fig. S1.** Comparison of the Cdc13N OB-fold with structural homologues (A) Cdc13N, OB-fold 1 (blue). (B) Cdc13 DNA Binding Domain (DBD, OB-fold 2), (purple) (PDB ID: 1S40). (C) Human Pot1 OB-fold (green), (PDB ID: 1XJV). (D) *on*TEBP OB-fold (cyan), (PDB ID: 1KIX)



Fig. S2. Cdc13N dimerization data (A) Cartoon representation of the Cdc13N dimer showing monomer A in blue and monomer B in wheat color. (B) Size exclusion data from a Superdex<sup>™</sup> S200 column (GE Healthcare). The protein elutes at 14.8 ml, which corresponds to a ~55 kDa molecule, which corresponds to a Cdc13N dimer. (C) Dynamic light scattering data of Cdc13N carried out at two different temperatures (4 and 22 °C) and in size exclusion buffer (see methods for buffer details). The results show a ~56 kDa particle in solution with 9% polydispersity, which corresponds to a Cdc13N dimer. (D) The Cdc13N dimer of the orthorhombic crystal form (P2<sub>1</sub>2<sub>1</sub>2) is shown for comparison with the Cdc13N dimer of the P1 crystal form of panel (A). The P2<sub>1</sub>2<sub>1</sub>2 crystal form contains a monomer in the asymmetric unit. Crystal symmetry analysis of Cdc13N shows that the two fold symmetry axis of the Cdc13N dimer coincides with the two-fold crystallographic axis.



Fig. S3. Full length Cdc13 (flCdc13) dimerization and DNA binding data (A) 12% SDS page gel of full length Cdc13. (B) EMSA of the flCdc13 (concentration varies 0-500 nM) with the 43mer (concentration constant at 1nM) yeast telomeric DNA. (C) Size exclusion data from a Superdex<sup>™</sup> S200 column (GE Healthcare). The protein elutes at 11.5 ml, which corresponds to a ~220 kDa molecule, which corresponds to a Cdc13 dimer. (D) Dynamic light scattering data of the full length Cdc13 carried out at two different temperatures (4 and 22 °C) and in size exclusion buffer (see methods for buffer details). The results show a 235 kDa particle in solution with 17.5% polydispersity, which corresponds to a Cdc13 dimer.



**Fig. S4.** Wild type Cdc13N DNA binding specificity (A) Electrophoretic mobility shift assay (EMSA) of Cdc13N with the 43mer (Table S2) (same as Fig. 3D). (B) EMSA of Cdc13N with poly(dT) 50mer. (C) EMSA of Cdc13N with a random single-stranded DNA sequence (43 base long). (D) EMSA of Cdc13N with double stranded telomeric DNA.



**Fig. S5.** Model of Cdc13N – DNA monomer complex (A) Model of Cdc13N monomer (blue cartoon) bound to single-stranded telomeric DNA (red stick). The model was created by overlaying the DBD of Cdc13 bound to single-stranded telomeric DNA (PDB ID: 1S40) with the Cdc13N structure solved here. (B) Orthogonal view of panel (A) showing residues K73, K75, V133, T140 and F142 (blue stick) that affect DNA-binding.



**Fig. S6:** Model of Cdc13N dimer ((monomers A (blue) and B (wheat)) bound to singlestranded telomeric DNA (red stick). The 5' and 3' ends of the two DNA strands are shown. The missing single-stranded DNA that connects the DNA bound to each monomer is shown as a red dashed line.