Table S1.	. Strains,	plasmids	and	primers	used	in thi	s study
-----------	------------	----------	-----	---------	------	--------	---------

Strain, plasmid or primer sequence	Relevant characteristics*	Source or reference
Bacterial strains		
Escherichia coli		
DH5a	F- φ80/acZΔM15 Δ(/acZYA-argF) U169 recA1 endA1 hsdR17 (r _k -, m _k +) phoA supE44 λ- thi-1 gyrA96 relA1	(Hanahan, 1983
DH5-T1 ^R	F- φ80/acZΔM15 Δ(/acZYA-argF)U169 recA1 endA1 hsdR17(rk-, mk+) phoA supE44	Invitrogen Inc.
	<i>thi</i> -1 <i>gyr</i> A96 <i>rel</i> A1 <i>ton</i> A (confers resistance to phage T1)	
DH5λpir	DH5 α lysogenized with lambda pir	(Dunn <i>et al.</i> , 2010)

Vibrio fischeri

AKD711	ES114 <i>∆nsrR</i>	(Dunn <i>et al.,</i> 2010)
ES114	Wild-type isolate from <i>E. scolopes</i> light organ	(Boettcher & Ruby, 1990)
YLW9	ES114 carrying pVSV102, Kan ^R	this study
YLW8	ES114 carrying pVSV208, Cam ^R	this study
YLW62	ES114∆norV carrying pVSV208, Cam ^R	this study
YLW61	ES114∆norV carrying pVSV102, Kan ^R	this study
YLW60	ES114∆hmp carrying pYLW29, Cam ^R	this study
YLW59	ES114∆hmp carrying pVSV105, Cam ^R	this study
YLW57	ES114∆hmp carrying pVSV208, Cam ^R	this study
YLW56	ES114∆hmp carrying pVSV102, Kan ^R	this study
YLW55	ES114 <i>ΔnsrR</i> carrying pLYW45	this study

YLW52	ES114 <i>∆nsrR</i> carrying pVSV208,Cm ^R	this study
YLW51	ES114 <i>∆nsrR</i> carrying pVSV102, Kan ^R	this study
YLW50	ES114 <i>∆nsrR</i> carrying pVSV209,Kan ^R and promoterless Cm ^R	this study
YLW48	ES114 carrying pYLW45, Kan ^R and promoterless Cm ^R	this study
YLW42	ES114 carrying pYLW29, Cam ^R	this study
YLW40	ES114 carrying pVSV209, Kan ^R and promoterless Cm^{R}	this study
YLW38	ES114∆norV	this study
YLW25	ES114 carrying pVSV105, Cam ^R	this study
YLW20	ES114∆hmp	this study
YLW117	ES114 <i>∆hmp-norV</i> carrying pVSV102, Kan ^R	this study
YLW116	ES114 <i>∆hmp-norV</i> carrying pVSV208, Cm ^R	this study
YLW113	ES114∆hmp-norV	this study
<u>Plasmids</u>		
pAKD711	$\Delta nsrR$ allele, R6Ky and CoIE1 replication origins, RP4 oriT, ermR, kanR	(Dunn <i>et. al.,</i> 2010)
pCR-BluntII TOPO	TOPO PCR-cloning vector, Kan ^R	Invitrogen
		Inc.
pEVS104	<i>oriV</i> _{R6Кү} , <i>oriT</i> _{RP4,} RP4-derived conjugative helper plasmid, Kan ^R	(Stabb, 2002)
pVSV102	oriV _{R6Kγ} , oriT _{RP4,} oriV _{pES213} , Dsgfp-tagged, Kan ^R ,	(Dunn <i>et al.</i> , 2006)
pVSV105	<i>oriV_{R6Ky}, oriT_{RP4,}oriV_{pES213},</i> complementation vector, Cam ^R	(Dunn <i>et al.</i> , 2006)
pVSV208	<i>oriV</i> _{R6Кү} , <i>oriT</i> _{RP4,} <i>oriV</i> _{pES213} , <i>rfp</i> -tagged, Cam ^R ,	(Dunn <i>et al.</i> , 2006)
pVSV209	<i>oriV</i> _{R6Ky} , <i>oriT</i> _{RP4} , <i>oriV</i> _{pES213} , KanR-constitutively expressed <i>rfp</i> , transcriptional terminators-(AvrII, Sall, Stul)-promoterless CmR and <i>gfp</i>	(Dunn <i>et al.</i> , 2006)
pYLW20	<i>Δhmp</i> allele, R6Kγ and ColE1 replication origins, RP4 <i>oriT</i> , <i>ermR</i> , <i>kanR</i>	this study

pYLW27	$\Delta norV$ allele, R6Ky and ColE1 replication origins, RP4 <i>oriT</i> , <i>ermR</i> , <i>kanR</i>	this study
pYLW29	pComhmp, <i>hmp</i> + complementing fragment cloned into pVSV105	this study
pYLW45	pPhmp:: <i>gfp</i> , a 300bp <i>hmp</i> promoter region cloned into pVSV209 to drive expression of promoterless <i>gfp</i>	this study

Primers[†]

hmpcomp-for	5'-AGT CGT AC <u>T CTA GA</u> C TCG AAT GAC ATC ACC AA-3'	this study
hmpcomp-rev	5'-GCT AGA TC <u><i>G AGC TC</i></u> T GAG TTT CAT CAA CTC GAA-3'	this study
hmppro-for	5'-TGA CGC TA <u>C C<i>TA GG</i></u> C GAA AGA GGT GCT TTC AT-3'	this study
hmppro-rev	5'-CAT GGT AC <u>A GGC CT</u> C CCA AAT TTA TCT TCA ACT AAC TC-3'	this study
VF0074qrt-for	5'- CGG TAT GAG TGC GTT TGG TCT TGC -3'	this study
VF0074qrt-rev	5'- CTG CAT CAC TCC TGG GTA ACG CTC -3'	this study
hmpqrt-for	5'- TGA AGT GCT ATT ACC AGC GGT TG -3'	this study
hmpqrt-rev	5'- AAG AGT GGC AAG TAA GTG ACC AC -3'	this study
norVqrt-for	5'- TCT TAC GCC ATT CAG TGC TTT GG -3'	this study
norVqrt-rev	5'- CTC GCC ATA CAC AAC CGT GAG -3'	this study

*Abbreviations used: Cam^R, chloramphenicol resistance; Erm^R, erythromycin resistance; Kan^R, kanamycin resistance; kb, kilobase; *gfp*, green fluorescent protein gene; *rfp*, red fluorescent protein gene.

[†]Sequences in underlined italics indicate the restriction-enzyme recognition sites introduced into primers (Xbal, TCTAGA; Sacl, GAGCTC; AvrII, CCTAGG; Stul, AGGCCT).

Fig. S2.

Fig. S3.

Fig. S4.

Fig. S5.

Fig. S6.

SUPPLEMENTAL DATA

Legends for supplementary figures

Fig. S1. NO exerts bacteriostatic effects on the growth of *V. fischeri*. Wild type (WT) and the Δhmp mutant were grown in minimal-salts medium plus GlcNAc, either in the presence or absence of an NO generator (100 μ M DEA-NONOate). OD₆₀₀ (A) and viable colony forming units (CFU) of the cultures (B) were monitored over time.

Fig. S2. Growth under anoxic conditions without NO challenge. Wild-type (WT) and four mutant strains were grown in minimal-salts medium plus GlcNAc. Growth was measured as OD₆₀₀.

Fig. S3. NO inhibition of oxygen consumption. The fractional inhibition of oxygen consumption of wild-type (open squares) and *∆hmp* (filled squares) strains was calculated from the steady-state oxygen consumption rate immediately after NO addition, relative to the rate immediately before addition. The NO donor, Proli-NONOate, was added at several concentrations. The data were fit to the Hill equation, from which an estimate of the NO concentration required for half-maximal inhibition was derived. The experiment was repeated three times with similar results, and one representative data set is shown here.

Fig. S4. The minimal infection dose (MID) of wild-type (WT) and Δhmp strains. Newly hatched juvenile squids were exposed to between approximately 500 and 3000 CFU (per ml) of either WT (circles) or Δhmp (squares), and the percentage of animals colonized was determined after 24 hrs. Colonization efficiency was estimated as the

inoculation concentration at which 50% of the animals became colonized (dashed lines). The R^2 values of both regressions (solid lines) were > 0.8.

Fig. S5. Colonization after a mixed inoculation with wild-type (WT) and $\Delta nsrR$ strains. Newly hatched juvenile squids were exposed to a mixture of WT and $\Delta nsrR$ at a ratio of approximately 1:1 (total dose: 3000 CFU/ml). The relative competitive index (RCI) was determined 24 hrs post-inoculation for each animal (circles). Dominance of the wild type over the mutant is indicated by an RCI value >1. The experiment was repeated three times with similar results. The mean value and 1 SEM are indicated. One representative data set is shown here. Filled circle: light organ was mono-colonized by one strain; open circle: light organ was colonized by both strains.

Fig. S6. Activation of the *V. fischeri hmp* promoter by exogenous NO. Wild-type (WT) cells carrying the *hmp* promoter driving *gfp* were exposed to different concentrations of the NO generator DEA-NONOate in FSW. Cell density (OD₆₀₀) and GFP fluorescence level were monitored over time. The experiment was repeated twice with similar results. One representative data set is shown here.