Supplemental Information

Nucleoid occlusion prevents cell division during replication fork arrest in *Bacillus subtilis*

Remi Bernard, Kathleen A. Marquis, and David Z. Rudner

SUPPLEMENTAL FIGURE LEGENDS

Figure S1. TetR bound to *tetO* arrays causes cell division inhibition and cell death. Images before and after induction of a replication roadblock at $+7^{\circ}$ (81.7 kb from the origin of replication). Time (in min) after removal of the inducer (aTC) is indicated. Images show membranes stained with FM4-64 (red), DAPI-stained DNA (blue), and TetR-GFP (green) bound to $(tetO)_{120}$. A phase contrast image shows cell lysis after 140 min. Similar results were obtained using TetR-YFP or TetR-CFP and with the *tetO* array at +130° (data not shown). White bar is 1 μ m.

Figure S2. Replication of the left chromosome arm continues during a block on the right arm. Images of cells during a replication roadblock at $+7^{\circ}$ (81.7 kb from the origin of replication). Images show membranes stained with FM4-64 (red), DAPI-stained DNA (blue), and LacI-CFP bound to a small array of *lacO* operators at -7° (green). LacI-CFP binding to the *lacO* array does not impair replication (data not shown). The bottom set of images shows membranes (red) and TetR-YFP foci (green) to visualize the replication roadblock at $+7^{\circ}$. Time (in min) after removal of aTC is indicated. White bar is 1 μ m.

Figure S3. Genomic microarray analysis before and after replication roadblocks at $+7^{\circ}$ and $+130^{\circ}$. Gene dosage (log₂) relative to a reference DNA is shown on the y-axis. All the probed genes in the *B. subtilis* chromosome arranged from -188° to $+172^{\circ}$ (*ter-oriC-ter*) are shown (grey dots). The smooth line was generated by plotting the average gene dosage of the 25 genes before and 25 genes after each gene probed. Black arrows indicate the genomic positions surrounding the site of insertion of the *tetO* array. The red arrow indicates an increase in DNA content for genes located adjacent to the *ter* site on the blocked arm. Time (in min) after induction of the roadblock is indicated on the left. The upper panels are cells prior to the induction of the roadblock. The lower panels are after induction of the roadblock. Schematic representations of the two conditions are shown to the left of the graphs.

Figure S4. Efficient origin segregation after release of the replication roadblock. Images show a strain harboring LacI-CFP and a small *lacO* array inserted adjacent to the origin at –

7°. This strain also contains TetR-YFP and a *tetO* array at +7° that is capable of blocking replication. The replication roadblock was induced as described previously for 90 min. aTC was added to the culture to release the replication roadblock and cells were visualized by fluorescence microscopy. Images show FM4-64 stained membranes (red), DAPI-stained DNA, and LacI-CFP (false-colored green) bound to a small lacO array at -7° . Time (in min) after releasing the roadblock is indicated. Segregated nucleoids (green carets) and cell division events (yellow carets) are highlighted. White bar is 1 μ m.

Figure S5. Comparison of RecA-GFP foci and filaments during treatment with HPUra and after induction of the replication roadblock. Time (in min) after addition of HPUra or removal of aTC is indicated. Images show RecA-GFP (green), FM4-64 stained membranes (red) and DAPI-stained DNA (blue).

Figure S6. Cell division inhibition during fork arrest does not require the SOS response. Representative fields of cells containing wild-type LexA or an uninducible LexA mutant (LexA^{ind-}) (Fabret et al., 2002) following treatment with HPUra (upper panels) or after induction of a replication roadblock (lower panels). Membranes were visualized with FM4-64. Time (in min) after drug treatment or induction of the roadblock is indicated. Average cell lengths and standard deviations of 500 cells for each strain are shown. White bar is 1 μ m.

Figure S7. Transcriptional repression of *ftsL* does not contribute to cell division inhibition during the replication roadblock. Cells harboring an IPTG-inducible promoter fusion to *ftsL* (P_{spac} -*ftsL*) and cells containing wild-type *ftsL* were subjected to the replication roadblock as described previously with the only difference that the medium used for pre-culture, washing, and growth was supplemented with 1mM IPTG to maintain expression of *ftsL*. At time points after induction of the roadblock, cells were visualized by fluorescence microscopy using the membrane dye FM4-64 and cell length was quantified. Histograms show length distributions at indicated time (in min). >1000 cells were measured for each strain and each time point.

Figure S8. Cells lacking Spo0J have a greater size distribution than wild-type during fork arrest. The replication roadblock was induced as described previously in isogenic strains with (black) or without (grey) Spo0J. Cells were visualized by fluorescence microscopy using the membrane dye FM4-64 and cell length was quantified. Histograms show length distributions at 90 minutes after induction of the roadblock. Cells smaller than 5μ m were binned together to highlight the increased number of small cells in the Spo0J mutant strain. >1500 cells were measured for each strain.

Figure S9. The SMC condensin complex is partially mislocalized in the absence of Spo0J during fork arrest. Images show the localization of ScpB-YFP (a subunit of the SMC condensin complex) during the replication roadblock in the presence or absence of Spo0J. The replication roadblock was induced as described previously and cells were visualized by fluorescence microscopy. Images show representative fields obtained 90 min after removal of aTC with ScpB-YFP (false-colored green), FM4-64-stained membranes (red), DAPI-stained DNA (blue). Septa that bisect the DNA mass in the absence of Spo0J are highlighed (yellow carets). White bar is 1 μ m.

Figure S1 Bernard et al.

Figure S2 Bernard et al.

Figure S3 Bernard et al.

Figure S4 Bernard et al.

merge

Figure S5 Bernard et al.

Figure S6 Bernard et al.

Figure S7 Bernard et al.

Figure S8 Bernard et al.

Figure S9 Bernard et al.

ScpB-YFP

ScpB-YFP

merge

Table S1 Bernard et al.

Induced genes

genes	Fold change \pm SD	Function or putative function
ypvA	2.95 ± 2.5	Unknown, putative DNA helicase
cotD	2.79 ± 0.8	Spore coat
proH	2.57 ± 2.3	Metabolism
yqxJ	2.49 ± 1.4	Unknown
yqfW	2.39 ± 1.0	Unknown
scpA	2.34 ± 0.9	Condensin complex
yxal	2.32 ± 1.1	Unknown
ywbH	2.19 ± 1.2	Unknown
ytbJ	2.17 ± 1.0	Unknown
, yphF	2.16 ± 0.5	Unknown
lonA	2.16 ± 1.1	Protease
ansR	2.15 ± 0.7	Metabolism
fur	2.14 ± 1.0	Iron uptake
yxbB	2.07 ± 0.9	Unknown
ruvA	2.06 ± 0.8	SOS-induced, recombintational repair
swrA	1.95 ± 0.3	Motility
<i>yrvM</i>	1.95 ± 0.7	Unknown
yaaK	1.93 ± 0.6	Unknown
yqeG	1.93 ± 0.7	Unknown
amyC	1.92 ± 0.8	Metabolism
vpsC	1.92 ± 0.4	Unknown
yqkE	1.90 ± 0.2	Unknown
yphE	1.89 ± 0.4	Unknown
rocR	1.81 ± 0.5	Metabolism
yqfS	1.79 ± 0.6	putative endonuclease
dnaD	1.79 ± 0.6	DNA replication, helicase loader
yvcL	1.78 ± 0.3	Unknown
ytmQ	1.76 ± 0.6	Unknown
yqfR	1.75 ± 0.5	putative RNA helicase
uvrB	1.72 ± 0.3	SOS-induced, Excision repair
yqfF	1.70 ± 0.5	Unknown
pbpA	1.70 ± 0.5	Cell wall, PBP2a
sspA	1.69 ± 0.6	Small spore protein SspA
degU	1.68 ± 0.4	Global regulator
yyaQ	1.67 ± 0.2	Unknown
ypsA	1.65 ± 0.3	Unknown
yvcK	1.65 ± 0.1	Unknown
yqjE	1.64 ± 0.6	Unknown
ypbG	1.62 ± 0.2	Unknown
Obg	1.62 ± 0.5	General stress response, essential GTP binding protein
dgkĀ	1.61 ± 0.3	Cell wall, dyacylglycerol kinase
ywfO	1.60 ± 0.1	Unknown
-		

Repressed genes

genes	Fold change \pm SD	Function or putative function
<u>yk</u> gA	-4.63 ± 0.8	Unknown, general stress response
hag	- 3.32 ± 0.6	Flagellin, motility
ykgB	-3.04 ± 0.9	Unknown, operon with ykgA
ylaL	-2.88 ± 0.2	Unknown
prkC	- 2.81 ± 0.5	Kinase, cell growth
ykzL	-2.58 ± 0.6	Unknown
yloV	-2.44 ± 0.3	Unknown
yloN	-2.23 ± 0.8	Unknown
yknX	-2.23 ± 0.3	Unknown, general stress response
ykqC	- 2.17 ± 0.6	Rnase J1, essential
yisN	- 1.80 ± 0.2	Unknown
ylaF	- 1.74 ± 0.4	Unknown
yonV	- 1.72 ± 0.1	Unknown
ykrP	- 1.67 ± 0.1	Unknown
yloU	- 1.61 ± 0.1	Unknown

Table S2Strains Used in this study

Strain	Genotype	Reference
BDR11	wild-type (PY79)	Youngman et al,1983
BRB1	$amyE::P_{spac(C)}$ -tetR-gfp (spec), 130° Ω (tetO) ₁₂₀ (cat)	This work
BRB12	(yneA-yneB-ynzC)::erm	This work
BRB35	(yneA-yneB-ynzC)::phleo, amyE::P _{spac(c)} -tetR-gfp(spec),130°Ω (tetO) ₁₂₀ (cat)	This work
BRB63	amyE::P _{spac(C)} -tetR-gfp (spec), 7°Ω (tetO) ₁₂₀ (cat)	This work
BRB73	noc::tet	Wu Errington, 2004
BRB89	noc::tet, (yneA-yneB-ynzC)::erm	This work
BRB114	noc::tet, (yneA-yneB-ynzC)::erm, amyE:: $P_{spac(C)}$ -tetR-gfp (spec), 130° Ω (tetO) ₁₂₀ (cat)	This work
BRB117	noc::tet, amyE::P _{spac(C)} -tetR-gfp (spec), 130°Ω (tetO) ₁₂₀ (cat)	This work
BRB150	amyE::P _{spac(C)} -tetR-gfp (spec), 7°Ω (tetO) ₁₂₀ (Phleo)	This work
BRB175	yndN Ω pRB033a (kan), sacA::P _{vneA} -cfp (erm)	This work
BRB190	yndN Ω pRB033a (kan), sacA:: P_{yneA} -cfp (erm), amyE:: $P_{spac(C)}$ -tetR-yfp (spec), 7° Ω (tetO) ₁₂₀ (cat)	This work
BRB206	noc::tet, amyE::P _{spac(C)} -tetR-gfp (spec), 7°Ω (tetO) ₁₂₀ (cat)	This work
BRB225	Δ (soj-spo0J)::cat, thrC::soj ⁺ (erm), amyE::P _{spac(C)} -tetR-gfp (spec), 7° Ω (tetO) ₁₂₀ (phleo)	This work
BRB291	(zapA-yshB)::tet, yhdG::P _{xylA} -zapA-yfp (erm), amyE::P _{spac(C)} -tetR-cfp (spec), 7°Ω (tetO) ₁₂₀ (cat)	This work
BRB359	P_{spac} -smc (cat) Ω , yhdG:: P_{pen} -tetR-gfp (spec), 7° Ω (tetO) ₁₂₀ (phleo)	This work
BRB636	recA-gfp-mut2(A206K) (spec), yhdG::P _{spac(C)} -tetR-cfp (erm), 7°Ω (tetO) ₁₂₀ (phleo)	This work
BNS1733	dnaB134 (ts) zhb-83::Tn917 (erm)	Wagner et al, 2009
BDR2429	recA-gfp-mut2(A206K) (spec)	Simmons et al, 2009

Table S3Plasmids used in this study

plasmid	description	reference
pRB012	∆(yneA-yneB-ynzC)::phleo	This work
pRB013	∆(yneA-yneB-ynzC)∷erm	This work
pRB015	sacA::P _{yneA} -cfp (erm)	This work
pRB020	+7° Ω (tetO) ₁₂₀ (cat)	This work
pRB032	+7° Ω (tetO) ₁₂₀ (phleo)	This work
pRB033	yndN Ω kan	This work
pRB046	yhdG::P _{xylA} -zapA-yfp (erm)	This work
pKM218	+130° Ω (tetO) ₁₂₀ (cat)	Marquis et al, 2008

Primer	Sequence	
oRB001	cgcGAATTCccattgttcgctgtgttttgc	
oRB002	cgcGGATCCtcatgatcataacctccaacag	
oRB003	cgccGTCGACgaggaatacggcaatatcgtattc	
oRB004	cctgCGGCcgactacgttaaatgaatcgcg	
oRB005	gcttcatcatcttctgtcatcg	
oRB006	tccattaaatcaccatcaccgc	
oRB010	gccgCAATTGttaaaactttatcaacagaagcgg	
oRB011	cggAAGCTTattatttgctgccataagcaac	
oRB014	gccGAATTCcaaacgggccaaatggc	
oRB015	ggcAAGCTTaacaggaatgtttgttcgc	
oRB018	cgcGGATCCgtactcgagatcatggaacattacctgagc	
oRB019	cgcGAATTCatgattggcggcactactg	
oRB029	caggtattcttaggccgtgatttc	
oRB032	gcacagatgcgtaaggagaaaatac	
oRB035	gccGAATTCggcatcgttgaacaagtcggg	
oRB036	cgcGGATCCgaaccagacatcccgagaaatgac	
oRB039	cgcAAGCTTacataaggaggaactactatgtctgacggcaaaaaacaaaaac	
oRB040	cggCTCGAGatccttttctttaagctgacgctc	
oDR078	gccGGATCCttatttgtatagttcatccatgcc	
oDR079	gcgCTCGAGggttccggaatgag	
oDR699	gcgtcGAATTCccggtggaaacgaggtcatc	
oDR700	cgcAAGCTTtgaatatttgattgatcgtaaccag	

Table S4 Oligonucleotides used in this study

restriction endonuclease sites are capitalized