## Supplementary material

Short Locked Nucleic Acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates.

Ellen Marie Straarup, Niels Fisker, Maj Hedtjärn, Marie W. Lindholm, Christoph Rosenbohm, Vibeke Aarup, Henrik Frydenlund Hansen, Henrik Ørum, Jens B. Rode Hansen and Troels Koch\*

Santaris Pharma A/S, Kogle Allé 6, DK-2970 Hørsholm, Denmark

## Supplementary figures and experimental section

Eight Bcl-2 targeting LNA gapmers were designed and synthesized (Table 1). The length of the oligonucleotides ranged from 12- to 22-nucleotides, and seven of these gapmers were designed as truncated versions of the 22-mer sequence (Table 1). Down regulation of the Bcl-2 expression was conducted under gymnotic delivery and recorded at two different time points (day 3 & 5) and at three concentrations (2.5, 5, &  $10 \mu M$ ).

| Oligo | Length | Target            | Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|--------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4743  | 12     | Bcl-2             | 5'- ${}^{\mathbf{m}}_{\mathbf{S}} {}^{\mathbf{m}}_{\mathbf{S}} {}^{\mathbf{c}}_{\mathbf{S}} {}^{\mathbf{c}}_{\mathbf{S}} {}^{\mathbf{g}}_{\mathbf{S}} {$                                                                                     |
| 4744  | 12     | Bcl-2             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4745  | 12     | Bcl-2             | 5'- ${}^{\mathbf{m}}_{\mathbf{C}_{\mathbf{S}}} {}^{\mathbf{m}}_{\mathbf{C}_{\mathbf{S}}} {}^{\mathbf{a}}_{\mathbf{S}} {}^{\mathbf{g}}_{\mathbf{S}} {}^{\mathbf{g}}_{\mathbf{S}} {}^{\mathbf{g}}_{\mathbf{S}} {}^{\mathbf{g}}_{\mathbf{S}} {}^{\mathbf{g}}_{\mathbf{S}} {}^{\mathbf{g}}_{\mathbf{S}} {}^{\mathbf{g}}_{\mathbf{S}} {}^{\mathbf{m}}_{\mathbf{C}_{\mathbf{S}}} {}^{\mathbf{m}}$ |
| 4746  | 14     | Bcl-2             | $5'- \mathbf{T_s}^{\mathbf{m}} \mathbf{C_s} \ c_s \ c_s \ a_s \ g_s \ c_s \ g_s \ t_s \ g_s \ c_s \ \mathbf{G_s}^{\mathbf{m}} \mathbf{C_s} \ c \ -3'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2993  | 16     | Bcl-2             | 5'- <b>m</b> C <sub><b>s</b></sub> T <sub><b>s</b></sub> c <sub><b>s</b></sub> c <sub><b>s</b></sub> c <sub><b>s</b></sub> a <sub><b>s</b></sub> g <sub><b>s</b></sub> c <sub><b>s</b></sub> a -3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2989  | 18     | Bcl-2             | $ 5'- \mathbf{T_s}^{\mathbf{m}} \mathbf{C_s} \ \mathbf{t_s} \ \mathbf{c_s} \ \mathbf{c_s} \ \mathbf{c_s} \ \mathbf{a_s} \ \mathbf{g_s} \ \mathbf{c_s} \ \mathbf{g_s} \ \mathbf{t_s} \ \mathbf{g_s} \ \mathbf{c_s} \ \mathbf{g_s} \ \mathbf{c_s} \ \mathbf{M_s} \ \mathbf{t} \ -3' $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4747  | 20     | Bcl-2             | $ 5'- \mathbf{T_S} \mathbf{T_S} \mathbf{c_S} \mathbf{t_S} \mathbf{c_S} \mathbf{c_S} \mathbf{c_S} \mathbf{c_S} \mathbf{a_S} \mathbf{g_S} \mathbf{c_S} \mathbf{g_S} \mathbf{t_S} \mathbf{g_S} \mathbf{c_S} \mathbf{g_S} \mathbf{c_S} \mathbf{g_S} \mathbf{c_S} \mathbf{a_S} \mathbf{T_S} \mathbf{c} -3' $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4748  | 22     | Bcl-2             | 5'- G <sub>s</sub> T <sub>s</sub> t <sub>s</sub> c <sub>s</sub> t <sub>s</sub> c <sub>s</sub> c <sub>s</sub> c <sub>s</sub> a <sub>s</sub> g <sub>s</sub> c <sub>s</sub> g <sub>s</sub> t <sub>s</sub> g <sub>s</sub> c <sub>s</sub> g <sub>s</sub> c <sub>s</sub> a <sub>s</sub> T <sub>s</sub> m <sub>C</sub> c -3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3088  | 16     | Scrambled control | 5'- ${}^{\mathbf{m}}\mathbf{C}_{\mathbf{S}}\mathbf{G}_{\mathbf{S}}\mathbf{T}_{\mathbf{S}}\mathbf{c}_{\mathbf{s}}\mathbf{a}_{\mathbf{S}}\mathbf{g}_{\mathbf{S}}\mathbf{t}_{\mathbf{s}}\mathbf{a}_{\mathbf{S}}\mathbf{t}_{\mathbf{S}}\mathbf{g}_{\mathbf{S}}\mathbf{c}_{\mathbf{S}}\mathbf{g}_{\mathbf{S}}\mathbf{c}_{\mathbf{S}}\mathbf{g}_{\mathbf{S}}\mathbf{A}_{\mathbf{S}}^{0}\mathbf{A}_{\mathbf{S}}\mathbf{T}_{\mathbf{S}}\mathbf{c}$ -3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

**Table1:** Design and sequence of LNA ologonucleotides. Bold capital letters denote LNA nucleotides and normal case letters denote DNA nucleotides. A = nucleotide monomer with an adenin-9-yl base, C = nucleotide monomer with a cytosin-1-yl base, G = nucleotide monomer with a guanin-9-yl base, G = nucleotide monomer with a thymin-1-yl base. G = nucleotide monomer with a 5-methylcytosin-1-yl base. Lower case "s" denote thioated phosphate group.

## Methods

<u>Cells:</u> 518A2 human melanoma cells were grown in DMEM (Invitrogen, Grand Island, NY) supplemented with 10% heat inactivated fetal bovine serum, 2 mM L-glutamine, and 100 U/ml penicillin G sodium and 100  $\mu$ g/ml streptomycin sulfate.

Gymnotic Delivery of Oligonucleotides: 518A2 cells were seeded at a low plating density of 75,000 cells per well in 6-well plates in complete media the day before the experiment began. The day after plating, oligonucleotides were added at the stated concentrations and mixed by gentle rocking

of the plate. LNA-oligonucleotides were used at a final concentration of 2.5, 5 and 10  $\mu$ M. The total incubation time before cell lysis and RNA isolation were 3 and 5 days at 37°C.

Quantitative RT-PCR: Total RNA from 518A2 cells was extracted using the Qiagen RNeasy kit (Qiagen, The Netherlands) according to the manufacturer's instructions. The reverse transcription reaction was carried out with random decamers, 0.5 µg total RNA, and the M-MLV RT enzyme from (Applied Biosystems, Carlsbad, CA) according to protocol. First strand cDNA was subsequently diluted 10 times in nuclease-free water before addition to the Real-Time PCR reaction mixture. mRNA quantification of Bcl-2 and GAPDH genes were done using standard TaqMan assays (Applied Biosystems). A two-fold total RNA dilution series from untreated 518A2 cells served as standard to ensure a linear range (Ct versus relative copy number) of the amplification. The Applied Biosystems 7500 Real-Time PCR instrument was used for amplification.

## **Results**

As illustrated in figure 1 the longer oligonucleotides (>14-mer) are less potent than the 12- and 14-mers. Taken together, the 4 shortmers (12-&14-mers) seemed to exert their activity faster than the longer LNA oligonucleotides.

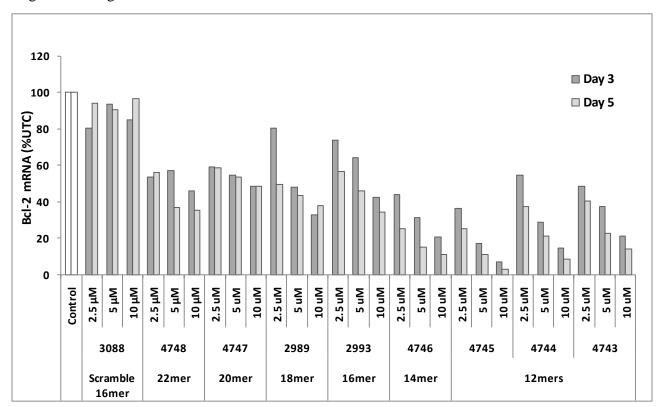



Figure 1: Bcl-2 mRNA reductions in 518A2 melanoma cells after gymnotic treatment for 3 and 5 days at 2.5, 5 and 10  $\mu$ M.