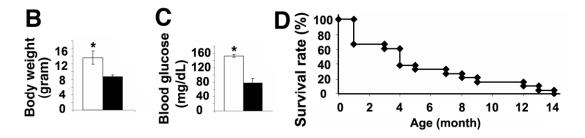
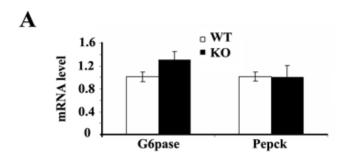

SIRT6 DEFICIENCY RESULTS IN SEVERE HYPOGLYCEMIA BY ENHANCING BOTH BASAL AND INSULIN-STIMULATED GLUCOSE UPTAKE IN MICE

Cuiying Xiao^{1,4}, Hyun-Seok Kim^{1,3,4},Tyler Lahusen^{1,4}, Rui-Hong Wang¹, Xiaoling Xu¹,
Oksana Gavrilova², William Jou², David Gius³, and Chu-Xia Deng¹
Supplemental Figures

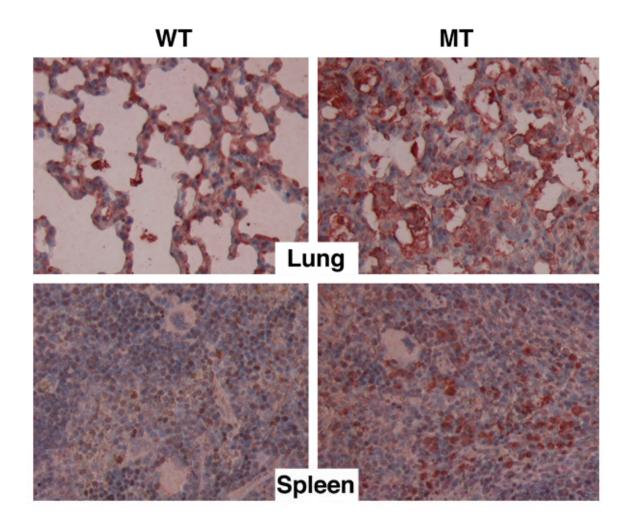


Supplemental FIGURE. 1. Phenotypic analysis of *Sirt6*^{Δ2-3/Δ2-3}mice. *A-B*. Visceral fat (arrows in B) was missing in the SIRT6 mutant mouse (A) at P25. *C-D*. H&E skin sections of SIRT6 mutant (C) and wild-type control (D) mice at P20. Arrow in (D) points to subcutaneous fat. *E*.


X-ray image of SIRT6 wild-type (upper) and mutant (lower) mice at P28. SIRT6 mutant mice have reduced bone density compared with control mice (arrows). F. SIRT6 mutant mice exhibit increased staining for acidic β -galactosidase revealed by senescence-associated β -gal staining in the liver and kidney at P15.

Α										
	Sirt6+/+;	Sirt6+/+;	Sirt6Δ/Δ;	Sirt6Δ/Δ;	Sirt6Δ/Δ;	Sirt6∆/+;	Sirt6∆/+;	Sirt6∆/+;	Sirt6+/+;	Total
	p53-/-	p53+/-	p53+/-	p53-/-	p53+/+	p53-/-	p53+/-	p53+/+	p53+/+	number
	(1/16)	(1/8)	(1/8)	(1/16)	(1/16)	(1/8)	(1/4)	(1/8)	(1/16)	of mice
No. of										
mice	3	19	18*	13*	10*	18	42	15	13	164

^{*} These mice were morphologically similar irrespective of their p53 status



Supplemental FIGURE 2. Phenotype of $Sirt6^{\Delta 2-3/\Delta 2-3}$ mice in p53 mutant background. A. Offspring of interbred between $Sirt6^{\Delta 2-3/+};p53^{+/-}$ mice. B-D. Body weight (B) and blood glucose level (C), and viability (D) of $Sirt6^{\Delta 2-3/\Delta 2-3};p53^{+/-}$ and $Sirt6^{\Delta 2-3/\Delta 2-3};p53^{-/-}$ mice. Open bars in B and C are WT animals, black bars in B and C are mutants.

В	Food consumed (g/g BW/day)								
_		P28-29	P32-39	P40-46					
	WT	0.22	0.19	0.20					
	MT	0.20	0.18	0.20					

Supplemental FIGURE 3. Gluconeogenic gene expression and food intake of Sirt6 mutant and control mice. *A.* G6pase and Pepck mRNA levels in the liver. *B.* Food intake of Sirt6 mutant and WT control mice after normalize with their body weight. No difference was observed. At least 4 pairs of animals at each time point were used.

Supplemental FIGURE 4. Immunohistochemical staining of GLUT1 in lung and spleen of SIRT6 wild-type and mutant mice. Organs and genotypes were as indicated.