		• • • • •	• • • •	
Supplamantal Tabla I	Unimore light tor datar	mination of the gone of	Invocation of LOW on	rimag at tatti aaid matabaligm
Subdiemental l'adie L	. I FIIIIEIS USEU IOF UELEF	IIIIIIALIOII OI LIE YEIE E	DIENNIUH UI KEV EHZ	VILLES OF TALLY ACTU ILLETADOUSIIL.
		minimetron of the gene e		, mes of mere metabolisme

	sense	antisense	
18S	CCATCCAATCGGTAGTAGCG	GTAACCCGTTGAACCCCATT	
CPT1A	TCTTGCAGTCGACTCACCTT	TCCACAGGACACATAGTCAGG	
DGAT2	AGTGGCAATGCTATCATCGTCGT	AAGGAATAAGTGGGAACCCAGATCA	
PGC1a	CCGAGAATTCATGGGAGCAAT	TTTCTGTGGGTTTGGTGTGA	
SCD1	CCGGAGACCCTTAGATCG A	TAGCCTGTAAAAGATTTCTGCAAA	

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Octanoate metabolic fate– Sodium salt of octanoic acid (SIGMA) was conjugated with FA- and endotoxin-free BSA, and a stock solution of 6mM was made up in serum free DMEM containing 20% (w/v) BSA. Incubation conditions were similar as for palmitate and oleate.

Flow cytometry– Caspase-3 activity was measured using the « caspase-3 intracellular activity assay Kit 1 » (Calbiochem) according to the manufacturer's instructions. Stained myotubes were analyzed on a Cytomics TM FC 500 measuring fluorescence at 505nm ex/530nm em and 550nm ex/620nm em for cleaved caspase-3 substrate (PhiPhiLux G1D2 substrate) and propidium iodide (PI), respectively. Data were analyzed using the cytomics RXP Analysis software.

<u>Supplemental Fig. S1.</u> CPT1mt expression does not modify octanoate metabolic fate. Uninfected (C) or Ad-LacZ- and Ad-CPT1mt-infected C2C12 myotubes were cultured for 24h in the presence of G5, and 0.3mM [1-¹⁴C]octanoate bound to 1% (w/v) BSA was added during the last 3h of culture. *A*. Octanoate oxidation to CO₂, ASP and Total. *B*. Octanoate esterification into TG, DAG and PL. Data are means \pm S.E.M. of three experiments performed in triplicate.

<u>Supplemental Fig. S2.</u> Palmitate induces apoptosis in C2C12 myotubes in a concentration- and timedependent manner. C2C12 myotubes were exposed to either different concentrations of palmitate in the presence of 1% (w/v) BSA for 24h (A), 0.8mM palmitate in the presence of 1% (w/v) BSA for different time periods (B), or 0.8mM palmitate in the presence of different BSA concentrations (C). A-C. Immunoblot analysis of protein extracts using specific antibodies against caspase-3 precursor and cleaved caspase-3. Tubulin was used as a control loading. Western blots are representative of three independent experiments. D. Quantitative assessments of caspase-3 cleavage and propidium iodide (PI) fluorescence by FACS analysis following a 24h-exposure in the absence or presence of 0.8mM palmitate plus 1% (w/v) BSA.

Figure S2

