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The free oscillator model was shown to adjust remarkably well the RNAmicroarray data
from LD12:12 experiments. A tempting hypothesis is that the synchronization of the free
running oscillator to the day-night cycle involves a light-dependent gated-coupling mechanism
that has restricted effect on the RNA traces when phase locked. We develop here a systematic
method to repertoriate the coupling schemes that synchronize the free oscillator to the diurnal
cycle while preserving the adjustment score obtained in the absence of coupling. For enough
weak coupling strength, any coupling schemes that achieve the correct phase shift preserve the
adjustement score. Those coupling schemes can be found in the framework of perturbation
theory in the vicinity of a periodic orbit [1,2,3], assuming that the driving force period is
enough close to the internal clock period. We consider the state vector of a nonlinear oscillator,
which represents the concentration of the molecular clock components. In constant dark
conditions, the concentration vector X evolves according to:

dX/dt = F(X,p0) (1)

Eq. 1 has a periodic solution Xγ(t) corresponding to a stable limit cycle of period T close
to 24 hours. We assume that the coupling between the light and the circadian oscillator is
mediated by a set of N components (k is the index), which modulate the parameter vector in
the direction of dpk:

p(t) = p0 +
∑
k=1,N

Lk(t, τk, (tm)k)dpk (2)

where the 24h-periodic scalar function Lk(t, τk, (tm)k) represents the temporal profile of acti-
vation (rectangular- or gaussian-shaped profiles in the present paper) of the light-dependent
component k with τk and (tm)k characterizing the effective coupling window duration and
center (t = 0 correspond to the night-day transition or CT0).

A small enough parametric impulse perturbation applied at phase u induces an infinitesi-
mal change of the circadian oscillator phase defining a T -periodic scalar function ZpiPRC(u,dp)
commonly called an infinitesimal phase response curve [2] or a parametric impulse phase re-
sponse curve [3]:

ZpiPRC(u,dpk) = (dpk)
T .Zp(u) (3)

where

Zp(u) =
[
∂F(Xγ(u))

∂p

]T ∂φ(Xγ(u))
∂X

(4)
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Then, the phase change induced by the light sensed during the daytime can be derived from
the convolution of the temporal profile of the light-sensing components with the piPRC:

∆φ =
∑
k=1,N

∫ T

0
Lk(u, τk, (tm)k)ZpiPRC(u+ φ,dpk)du (5)

where φ is the phase of the oscillator at CT0. A stable entrainment state requires that the
scalar functions L and ZipPRC satisfy:{ ∑

k=1,N

∫ T
0 Lk(u, τk, (tm)k)ZpiPRC(u+ φ∗,dpk)du = δφ∗∑

k=1,N

∫ T
0 Lk(u, τk, (tm)k)Z ′piPRC(u+ φ∗,dpk)du < 0

(6)

where φ∗ is the locked phase (relative to CT0) and δφ∗ is the phase change induced by the
period mismatch between the free oscillator and the day-night period, which is assumed to
be small with respect to T . The derivative of the function ZipPRC with respect to the phase
variable is noted Z ′ipPRC .

For any modulated parameter set dp whose ZpiPRC-function is equal to δφ∗, one can
always find τk and (tm)k, that satisfies Eqs. 6 above. In the case where there is a unique
coupling scheme (N = 1) with a rectangular profile, the coupling interval satisfies:{ ∫ tm+τ/2

tm−τ/2 ZpiPRC(u,dp)du = δφ∗∫ tm+τ/2
tm−τ/2 Z ′piPRC(u,dp)du < 0

(7)

Figures 5 and S4 show the numerical solutions of this equation with δφ∗ equal to 0 (the FRP
being equal to 24 hours), which determine the coupling intervals (compatible with experimen-
tal data) for positive and negative modulation of the 16 parameters of the model.

References

[1] Kramer MA, Rabitz H, Calo JM (1984) Sensitivity analysis of oscillatory systems. Appl
Math Model. 8: 328-340.

[2] Rand DA, Shulgin BV, Salazar D, Millar AJ (2004) Design principles underlying circadian
clocks. J R Soc Interface. 1: 119-30.

[3] Taylor SR, Gunawan R, Petzold LR, Doyle FJ 3rd (2008) Sensitivity Measures for Oscil-
lating Systems: Application to Mammalian Circadian Gene Network. IEEE Trans Automat
Contr. 53: 177-188.

2


