Supporting Information

A De Novo Approach to the Synthesis of Glycosylated Methymycin Analogues with Structural and Stereochemical Diversity

Svetlana A. Borisova,^{+§} Sanjeeva R. Guppi,^{+†} Hak Joong Kim,^{+§} Bulan Wu,^{+†} John H. Penn,^{*†} Hung-wen Liu^{*§} and George A. O'Doherty^{*‡}

[†]Department of Chemistry, West Virginia University, Morgantown, WV 26506 [§]Department of Chemistry & Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712 [‡]Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115

g.odoherty@neu.edu

Section A: General Information

Section B:	Experimental Procedures
S 7	Experimental Procedure for (15 (S))
S 8	Experimental Procedure for $(\mathbf{A}(S))$
S 8	Experimental Procedure for (13a/13b)
S 10	Experimental Procedure for (15 (R))
S 11	Experimental Procedure for $(\mathbf{B}(R))$
S 12	Experimental Procedure for (13c/13d)
S 13	Experimental Procedure for (16)
S 14	Experimental Procedure for (12)
S 16	Experimental Procedure for (17)
S 17	Experimental Procedure for (1)
S 18	Experimental Procedure for (2)
S 19	Experimental Procedure for (18)
S 21	Experimental Procedure for (19)
S 22	Experimental Procedure for (21)
S 23	Experimental Procedure for (3)
S 25	Experimental Procedure for (4)
S 26	Experimental Procedure for (5)

S 27	Experimental Procedure for (6)
S 28	Experimental Procedure for (22)
S 30	Experimental Procedure for (23)
S 31	Experimental Procedure for (24)
S 32	Experimental Procedure for (7)
S 33	Experimental Procedure for (25)
S 35	Experimental Procedure for (26)
S 36	Experimental Procedure for (8)
S 37	Experimental Procedure for (9)
S 39	Experimental Procedure for (C)
S 40	Experimental Procedure for (27)
S 41	Experimental Procedure for (10)
S 42	Experimental Procedure for (28)
S 44	Experimental Procedure for (29)
S 45	Experimental Procedure for (30)
S 46	Experimental Procedure for (11)

Section C:	¹ H and ¹³ C NMR Spectra
S 48-49	¹ H and ¹³ C NMR Spectra of 16
S 50-51	¹ H and ¹³ C NMR Spectra of 12
S 52-53	¹ H and ¹³ C NMR Spectra of 17
S 54-55	¹ H and ¹³ C NMR Spectra of 1
S 56-56	¹ H and ¹³ C NMR Spectra of 2
S 57-59	¹ H and ¹³ C NMR Spectra of 18
S 60-61	¹ H and ¹³ C NMR Spectra of 19
S 62-63	¹ H and ¹³ C NMR Spectra of 21
S 64-65	¹ H and ¹³ C NMR Spectra of 3
S 66-67	¹ H and ¹³ C NMR Spectra of 4
S 68-69	¹ H and ¹³ C NMR Spectra of 5
S 70-71	¹ H and ¹³ C NMR Spectra of 6
S 72-73	¹ H and ¹³ C NMR Spectra of 22
S 74-75	¹ H and ¹³ C NMR Spectra of 23
S 76-77	¹ H and ¹³ C NMR Spectra of 24
S 78-79	¹ H and ¹³ C NMR Spectra of 7
S 80-81	¹ H and ¹³ C NMR Spectra of 25
S 82-83	¹ H and ¹³ C NMR Spectra of 26
S 84-85	¹ H and ¹³ C NMR Spectra of 8

- S 86-87 ¹H and ¹³C NMR Spectra of **9**
- S 88-89 ¹H and ¹³C NMR Spectra of C
- S 90-91 ¹H and ¹³C NMR Spectra of 27
- S 92-93 ¹H and ¹³C NMR Spectra of **10**
- S 94-95 ¹H and ¹³C NMR Spectra of **28**
- S 96-97 ¹H and ¹³C NMR Spectra of **29**
- S 98-99 ¹H and ¹³C NMR Spectra of **30**
- S 100-101 ¹H and ¹³C NMR Spectra of **11**

Section A: General Information:

General methods and materials: ¹H and ¹³C spectra were recorded on Joel 270 and Varian 600 spectrometers. Chemical shifts were reported relative to internal tetramethylsilane (δ 0.00 ppm) or CDCl₃ (δ 7.26 ppm) or CD₃OD (δ 4.78 ppm) or acetone-d₆ (δ 2.05 ppm) for ¹H and CDCl₃ (δ 77.0 ppm) or CD₃OD (δ 49.0 ppm) or acetone-d₆ (δ 29.92 ppm) for ¹³C. Optical rotations were measured with a Jasco DIP-370 digital polarimeter in the solvent specified. Infrared (IR) spectra were obtained on a prospect MIDAC FT-IR spectrometer. Flash column chromatography was performed on ICN reagent 60 (60-200 mesh) silica gel. Analytical thin-layer chromatography was performed with precoated glass-backed plates (Whatman K6F 60, F254) and visualized by guenching of fluorescence and by charring after treatment with panisaldehyde or phosphomolybdic acid or potassium permanganate stain. R_f values were obtained by elution in the stated solvent ratios (v/v). Ether, THF, methylene chloride and triethylamine were dried by passing through activated alumina (8 x 14 mesh) column with Argon gas pressure. Commercial reagents were used without purification unless otherwise noted. Air and/or moisture-sensitive reactions were carried out under an atmosphere of argon/nitrogen using oven/flamed-dried glassware and standard syringe/septa techniques.

Section B: Experimental Procedures:

(S)-1-(2-Furyl)-ethanol 15 (S).¹

To a 25 ml flask was added furan ketone 14 (800 mg, 7.27 mmol), CH₂Cl₂ (3.7 ml), formic acid/triethylamine (1:1, 9.71 ml) and Noyori asymmetric transfer hydrogenation catalyst (R)-Ru(n^6 -mesitylene)-(S, S)-TsDPEN (22.2 mg, 0.5 mol%). The resulting solution was stirred at room temperature for 24 h. The reaction mixture was diluted with water (10 ml) and extracted with EtOAc (3 x 25 ml). The combined organic layers were washed with saturated NaHCO₃, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 30% EtOAc/hexane to give furan alcohol 15 (S) (745 mg, 6.76 mmol, 93%): colorless oil; R_f $(30\% \text{ EtOAc/hexane}) = 0.41; [\alpha]^{25}_{D} = + 21 (c = 1.0, \text{ CH}_2\text{Cl}_2); \text{ IR (thin film, cm}^{-1}) 3360,$ 2980, 2935, 1668, 1505, 1467, 1370, 1229, 1149, 1007, 877, 734; ¹H NMR (600 MHz CDCl₃) δ 7.30 (d, J = 1.8, 1H), 6.26 (dd, J = 3.0, 1.8 Hz, 1H), 6.15 (d, J = 3.0, 1H), 4.78 $(dq, J = 6.6, 6.6 Hz, 1H), 3.11 (s, 1H), 1.46 (d, J = 6.6 Hz, 3H); {}^{13}C NMR (150 MHz, 1.46 Hz, 1$ CDCl₃) δ 157.7, 141.6, 109.9, 104.9, 63.3, 21.1.

¹ Ohkuma, T.; Koizumi, M.; Yoshida, M.; Noyori R. Org. Lett., 2000, 2, 1749-1751.

(2S)-6-Hydroxy-2- methyl-2H-Pyran-3 (6H)-one A (S).

Compound furan alcohol **15** (*S*) (8.30 g, 74.1 mmol), 184.5 mL of THF, and 61.5 mL of H₂O were added to a round bottom flask and cooled to 0 °C. Solid NaHCO₃ (12.4 g, 148.2 mmol), NaOAc•3H₂O (10.1 g, 74.1 mmol), and NBS (13.1 g, 74.1 mmol) were added to the solution and the mixture was stirred for 1 h at 0 °C. The reaction was quenched with saturated NaHCO₃ (200 mL), extracted (3 x 200 mL) with Et₂O, dried (Na₂SO₄), concentrated under reduced pressure and purified by silica gel chromatography eluting with 25% EtOAc/hexane to give pyranone **A** (*S*) (8.56 g, 67.4 mmol, 91%): R_f (60% EtOAc/hexane) = 0.29; $[\alpha]^{25}_{D}$ = + 44 (c = 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 3381, 2988, 2942, 1692, 1447, 1373, 1232, 1021, 937; ¹H NMR (600 MHz, CDCl₃) major isomer δ 6.82 (dd, J = 10.2, 3.0 Hz, 1H), 5.96 (d, J = 10.2, 1H), 5.48 (d, J = 3.0 Hz, 1H), 3.99 (q, J = 7.2 Hz, 1H), 1.23 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) major isomer δ 197.6, 145.3, 126.6, 87.2, 74.8, 15.1.

(2S, 6S)-tert-butyl -5,6-dihydro-6-methyl-5-oxo-2H-pyran-2-yl carbonate (13a).

To a solution of 7.4 g pyranone alcohol A (57.8 mmol) in 80 mL CH₂Cl₂ was added 528 mg DMAP (4.33 mmol) at -78 °C. A pre-cooled solution of 25.2 g (Boc)₂O (115.6 mmol) in 30

mL CH₂Cl₂ was dropwised into the reaction mixture via a cannula. The reaction mixture was stirred at -78 °C for 12 hours. The reaction was quenched by 100 mL saturated aqueous NaHCO₃ and then extracted with Et₂O (300 mL × 3). The organic layers were pooled, then washed by 70 mL saturated aqueous NaCl, dried over Na₂SO₄ and concentrated under reduced pressure to give a residue. Flash chromatography on silica gel eluting with hexane-Et₂O (100:7) gave Boc protected α -pyranone **13a** (7.8 g, 60%). Elution with hexane-Et₂O (10:1) gave β -isomer **13b** (2.5g, 19%).

α-pyranone **13a**: $R_f = 0.67$ (33% EtOAc/hexane); $[α]_D^{25} = +98$ (*c* 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2984, 2942, 1752, 1703, 1371, 1273, 1254, 1153, 938, 838; ¹H NMR (600 MHz, CDCl₃) δ 6.78 (dd, J = 10.2, 3.6 Hz, 1H), 6.22 (d, J = 3.6 Hz, 1H), 6.09 (d, J = 10.2 Hz, 1H), 4.53 (q, J = 6.6 Hz, 1H), 1.40 (s, 9H), 1.28 (d, J = 6.6 Hz, 3H); ¹³C NMR (150.8 MHz, CDCl₃) δ 195.5, 151.7, 140.9, 128.2, 89.1, 83.3, 72.0, 27.5, 15.1;

β -pyranone **13b**: $R_f = 0.60$ (33% EtOAc/hexane); $[\alpha]_D^{25} = -35$ (*c* 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2984, 1752, 1702, 1371, 1276, 1254, 1161, 1068, 939, 854; ¹H NMR (600 MHz, CDCl₃) δ 6.88 (dd, J = 10.2, 2.4 Hz, 1H), 6.36 (dd, J = 2.4, 1.2 Hz, 1H), 6.20 (dd, J = 10.2, 1.2 Hz, 1H), 4.37 (q, J = 7.2 Hz, 1H), 1.51 (s, 9H), 1.50 (d, J = 7.2 Hz, 3H); ¹³C NMR (150.8 MHz, CDCl₃) δ 196.1, 152.0, 143.0, 128.5, 90.1, 83.6, 75.9, 27.9 (3C), 18.8.

(R)-1-(furan-2-yl)ethanol (15 (R))

To a solution of 15 g acylfuran **14** (136.4 mmol) in 20 mL CH₂Cl₂ was added a prepared solution of formic acid/triethylamine (40 mL, 2:1(mol/mol)) and Noyori asymmetric transfer hydrogenation catalyst (*R*)-Ru(η^6 -mesitylene)-(*R*, R)-TsDPEN (0.2 g, 0.25 mol%). The resulting solution was stirred at room temperature for 24 h. Then it was diluted with water (90 mL) and extracted with Et₂O (200 mL x 3). The pooled organic layer was washed with 50 mL saturated NaHCO₃, 50 mL saturated brine, dried over Na₂SO₄ and then concentrated under reduced pressure to give a residue. Flush chromatograph on silica gel eluting with hexane-Et₂O (7:3) gave furan alcohol **15** (*R*) (15.0 g, 98%):² Colorless oil; *R*_f = 0.38 (7:3 (v/v) Hexane/EtOAc); $[\alpha]_D^{25} = +20.8^\circ$ (c = 1.20, CHCl₂); ¹H NMR (270 MHz CDCl₃) δ 7.36 (d, *J* = 1.7, 1H), 6.31 (dd, *J* = 3.2, 2.0 Hz, 1H), 6.22 (d, *J* = 3.2, 1H), 4.87 (dq, *J* = 6.4, 6.4 Hz, 1H), 2.19 (bs, 1H), 1.53 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 157.7, 141.6, 109.9, 104.9, 63.3, 21.1.

² These known compounds were characterized based on the comparison with authentic sample that our group prepared before: (a) Guo, H.; O'Doherty, G. A. *Org. Lett.* **2005**, *7*, 3921-3924. (b) Li, M.; Scott, J. G.; O'Doherty, G. A. *Tetrahedron Lett.* **2004**, *45*, 1005-1009.

(2R,6S)-6-hydroxy-2-methyl-2H-pyran-3(6H)-one (B)

To a solution of 13.0 g furan alcohol 15 (R) (116 mmol) in 386 mL THF-H₂O (3:1) was added 19.5 g NaHCO₃ (232 mmol), 15.8 g NaOAc•3H₂O (116 mmol), and 20.7 g NBS (116 mmol) at 0 °C. The reaction mixture was kept stirring at this temperature for 1 hour, then at 0 °C 200 mL saturated NaHCO₃ was added to quench the reaction. The reaction mixture was directly extracted with Et_2O (300 mL \times 3) and the organic layer was pooled, washed by 100 mL saturated brine, dried over Na₂SO₄ and then concentrated reduced pressure to give a residue, which was rapidly subjected to flush chromatography on silica gel. Elution with hexane-EtOAc (1:1) afforded pyranone alcohol **B** (13.5 g, 91%, $\alpha:\beta=2.8:1$): White solid; $R_f = 0.17$ (7:3 (v/v) hexane/EtOAc); ¹H NMR (270 MHz, CDCl₃) major isomer (α): $\delta 6.89$ (dd, J = 10.4, 3.5 Hz, 1H), 6.11 (d, J = 10.4, 1H), 5.64 (dd, J = 4.2, 3.5 Hz, 1H), 4.71 (q, J = 6.9 Hz, 1H), 3.04 (d, J = 4.7 Hz, 1H), 1.39 (d, J = 6.7 Hz, 3H); minor isomer (β): δ 6.94 (dd, J = 10.4, 1.5 Hz, 1H), 6.16 (dd, J = 10.2, 1.5, 1H), 5.67 (dd, J= 5.7, 1.2 Hz, 1H), 4.23 (dq, J = 6.7, 1.2 Hz, 1H), 3.28 (d, J = 7.4 Hz, 1H), 1.46 (d, J = 6.7Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) major isomer (α): δ 197.4, 144.9, 126.9, 87.4, 70.3, 15.2. minor isomer (β): δ 196.8, 148.5, 128.2, 87.2, 75.1, 16.1.

(2R,6R)-t-butyl-5,6-dihydro-6-methyl-5-oxo -2H-pyran-2-yl carbonate (13c)

To a solution of 29.7 g pyranone alcohol **B** (190 mmol) in 130 mL CH₂Cl₂ was added 1.74 g DMAP (14.2 mmol) at -78 °C. A pre-cooled solution of 83.0 g (Boc)₂O (380 mmol) in 50 mL CH₂Cl₂ was dropwised into the reaction mixture via a cannula. The reaction mixture was stirred at -78 °C for 12 hours. The reaction was quenched by 200 mL saturated NaHCO₃ and then extracted with Et₂O (300 mL × 3). The organic layers were pooled, then washed by 70 mL saturated NaCl, dried over Na₂SO₄ and concentrated under reduced pressure to give a residue. Flush chromatograph on silica gel eluting with 6% and 8% hexane/Et₂O gave two diastereomers (35.7g, 73%) of Boc protected *α*-pyranone **13c** and *β*-pyranone **13D** (*α*:*β*=3:1).

Boc protected α -pyranone **13c:** $R_f = 0.57$ (7:3 (v/v) hexane/EtOAc); $[\alpha]_D^{25} = -97^\circ$ (c = 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2986, 1752, 1703, 1633, 1278, 1258, 1159, 1090, 1058, 1029, 944; ¹H NMR (600 MHz, CDCl₃) δ 6.79 (dd, J = 10.2, 4.2 Hz, 1H), 6.24 (d, J = 4.2 Hz, 1H), 6.10 (d, J = 10.2 Hz, 1H), 4.55 (q, J = 6.6 Hz, 1H), 1.40 (s, 9H), 1.30 (d, J = 6.7 Hz, 3H); ¹³C NMR (150.8 MHz, CDCl₃) δ 195.4, 151.7, 140.9, 128.1, 89.1, 83.2, 71.9, 27.4, 15.0; HRMS (CI) : calcd for $[C_{11}H_{16}O_5Na]^+$: 251.0890, Found 251.0884.

Boc protected β -pyranone **13d:** $R_f = 0.52$ (7:3 (v/v) hexane/EtOAc); mp: 43-43.5 °C; $[\alpha]_D^{25}$ = +42.3 (c = 1.3, CHCl₃); IR (thin film, cm⁻¹) 2986, 1752, 1703, 1633, 1278, 1258, 1159, 1090, 1058, 1029, 944; ¹H NMR (600 MHz, CDCl₃) δ 6.82 (dd, J = 10.2, 2.4 Hz, 1H), 6.28 (dd, J = 4.2, 1.2 Hz, 1H), 6.11 (dd, J = 10.2, 1.2 Hz, 1H), 4.27 (q, J = 6.6 Hz, 1H), 1.42 (s, 9H), 1.39 (d, J = 6.9 Hz, 3H); ¹³C NMR (150.8 MHz, CDCl₃) δ 195.6, 151.6, 142.7, 128.0, 89.7, 83.3, 75.5, 27.4, 18.3; HRMS (CI): calcd for [C₁₁H₁₆O₅ + Na]⁺: 251.0890, Found 251.0883.

(16):

The enone compound III³ (100 mg, 0.34 mmol) and *o*-NO₂C₆H₄SO₂NHNH₂ (414 mg, 2.04 mmol) were dissolved in 3.4 mL of CH₂Cl₂ in a round bottom flask and cooled 0 °C under nitrogen atmosphere then triethylamine (393 μ L, 2.72 mmol) was added and the reaction mixture was stirred at 0 °C for 12 hours and on completion, as monitored by TLC. The reaction mixture was concentrated and was pipetted directly on to a silica gel column using CH₂Cl₂ (1 mL) in three portions. The crude product was purified using silica gel flash

³ The macrolactone III was purified as previously reported from the fermentation broth of S. venezuelae KdesI-80 mutant, whose desosamine biosynthetic genes had been partially disrupted (Borisova, S. A.; Zhao, L.; Sherman, D. H.; Liu, H.-w. Org. Lett. 1999, 1, 133–136).

chromatography eluting with EtOAc/hexanes (15:85) to give deoxy ketone **16** (96 mg, 0.32 mmol, 95 %) as viscous oil. R_f (33% EtOAc/Hexane) = 0.47; $[\alpha]^{25}_D$ = -17.48 (c = 1.7, CHCl₃); IR (thin film, cm⁻¹) 3504, 2971, 2940, 2882, 1725, 1701, 1462, 1373, 1171, 1147, 1093, 992, 898, 731; ¹H NMR (600 MHz, CDCl₃) δ 4.69 (ddd, J = 7.8, 5.4, 2.4 Hz, 1H), 3.49 (ddd, J = 10.2, 5.4, 1.2 Hz, 1H), 3.10 (ddd, J = 18.6, 12.6, 2.4 Hz, 1H), 2.69 (dq, J = 12.6, 6.6 Hz, 1H), 2.54 (dqd, J = 13.2, 6.6, 4.2 Hz, 1H), 2.12 (ddd, J = 18.6, 5.4, 2.4 Hz, 1H), 1.90-1.79 (m, 3H), 1.70 (d, J = 5.4 Hz, 1H), 1.54-1.49 (m, 2H), 1.42 (dddd, J = 13.8, 11.4, 5.4, 2.4 Hz, 1H), 1.36 (ddd, J = 13.2, 12.6, 3.6 Hz, 1H), 1.26 (d, J = 6.6 Hz, 3H), 1.20-1.15 (m, 1H), 1.16 (d, J = 7.2 Hz, 3H); 1³C NMR (150 MHz, CDCl₃) δ 214.5, 174.8, 81.2, 79.2, 46.1, 44.0, 34.2, 34.1, 33.7, 32.4, 24.5, 20.8, 19.6, 18.2, 17.2, 15.6, 11.0; CIHRMS calcd for [C₁₇H₃₀O₄ + Na]⁺: 321.2041, Found 321.2037.

(12):

A CH_2Cl_2 (0.6 mL) solution of Boc-enone **13a** (93 mg, 0.40 mmol) and 10-deoxymethynolide alcohol **16** (60 mg, 0.20 mmol) was cooled to 0 °C. A CH_2Cl_2 (0.2

mL) solution of Pd₂(dba)₃·CHCl₃ (21 mg, 2.5 mol%) and PPh₃ (22 mg, 10 mol%) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at 0 °C for 5 hours. The reaction mixture was quenched with 5 mL of satd. aq. NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 20% EtOAc/hexanes to give enone 12 (75 mg, 0.18 mmol, 90%) as viscous oil. R_f (50% EtOAc/hexanes) = 0.50; $\left[\alpha\right]_{D}^{25} = -65 \ (c = 0.3, \text{ MeOH}); \text{ IR (thin film, cm}^{-1}) 2965, 2930, 1724, 1701, 1459, 1171, 1459, 1450$ 1019, 974; ¹H NMR (600 MHz, CDCl₃) δ 6.85 (dd, J = 10.8, 3.0 Hz, 1H), 6.07 (d, J = 10.2 Hz, 1H), 5.24 (d, J = 3.6 Hz, 1H), 4.70 (ddd, J = 7.8, 5.4, 2.4 Hz, 1H), 4.60 (q, J = 6.6 Hz, 1H), 3.65 (dd, J = 10.2, 1.2 Hz, 1H), 3.09 (ddd, J = 19.6, 11.4, 2.4 Hz, 1H), 2.87 (dq, J =10.2, 6.6 Hz, 1H), 2.56 (dqd, J = 13.8, 6.6, 4.2 H), 2.13 (ddd, J = 18.6, 5.4, 3.0 Hz, 1H), 1.91-1.82 (m, 3H), 1.55-1.50 (m, 2H), 1.48-1.43 (m, 1H), 1.36 (d, J = 6.6 Hz, 3H), 1.38-1.32 (m, 1H), 1.24-1.16 (m, 1H), 1.24 (d, J = 7.2 Hz, 3H), 1.14 (d, J = 7.2 Hz, 3H), 1.09 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 7.2 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ214.1, 196.8, 174.1, 142.5, 126.9, 95.8, 88.5, 81.1, 70.6, 45.8, 44.1, 34.7, 34.3, 33.8, 32.3, 24.2, 20.6, 17.9, 17.1, 15.3, 14.9, 10.8; CIHRMS calcd for $[C_{23}H_{36}O_6 +$ Na]⁺: 431.2409, Found 431.2405.

The enone compound 12 (60 mg, 0.15 mmol) was dissolved in 0.2 mL of CH_2Cl_2 and 0.2 mL MeOH in round bottom flask and cooled -78 °C then NaBH₄ (6.1 mg, 0.15 mmol) was added and the reaction mixture was stirred at -78 °C for 3 hours and on completion, monitored by TLC, reaction mixture was diluted with ether and was quenched with 2 mL of satd. aq. NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 25% EtOAc/hexanes to give allylic alcohol 17 (56 mg, 0.14 mmol, 92%) as viscous oil. R_f (50% EtOAc/hexanes) = 0.35; $[\alpha]_D^{25} = -14$ (c = 0.25, MeOH); IR (thin film, cm⁻¹) 3444, 2968, 2934, 1726, 1704, 1460, 1171, 1039, 899; ¹H NMR (600 MHz, CDCl₃) δ 5.94 (d, J = 10.2 Hz, 1H), 5.78 (dt, J = 10.2, 2.4 Hz, 1H), 4.98 (br s, 1H), 4.68 (ddd, J = 7.2, 4.8, 2.4 Hz, 1H), 3.81 (d, J = 8.4 Hz, 1H), 3.67 (dq, J = 9.6, 6.0 Hz, 1H), 3.57 (d, J = 10.2 Hz, 1H), 3.10 (ddd, J = 18.6, 12.6, 2.4 Hz, 1H), 2.83 (dq, J =9.6, 6.6 Hz, 1H), 2.55(dqd, J = 13.8, 6.6, 4.2 Hz, 1H), 2.14 (ddd, J = 18.6, 5.4, 2.4 Hz, 1H), 1.91-1.81 (m, 3H), 1.66 (br s, 1H), 1.54-1.49 (m, 2H), 1.48-1.40 (m, 1H), 1.39-1.35 (m, 1H), 1.29 (d, J = 6.0 Hz, 3H), 1.25-1.23 (m, 1H), 1.21 (d, J = 7.2 Hz, 3H), 1.14 (d, J = 7.2

Hz, 3H), 1.07 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 214.4, 174.4, 133.4, 126.0, 96.4, 86.8, 80.9, 69.2, 68.0, 45.9, 44.3, 34.8, 34.0, 33.8, 32.2, 29.6, 24.2, 20.5, 17.9, 17.6, 17.1, 15.3, 10.8; CIHRMS calcd for [C₂₃H₃₈O₆ + Na]⁺: 433.2566, Found 433.2560.

(1):

The enol compound **17** (40 mg, 0.10 mmol) and *o*-NO₂C₆H₄SO₂NHNH₂ (120 mg, 0.60 mmol) were dissolved in 1.0 mL of CH₂Cl₂ in a round bottom flask and cooled 0 °C under nitrogen atmosphere then triethylamine (114 μ L, 0.80 mmol) was added and the reaction mixture was stirred at 0 °C for 12 hours and on completion, as monitored by TLC. The reaction mixture was concentrated and was pipetted directly on to a silica gel column using CH₂Cl₂ (1 mL) in three portions. The crude product was purified using silica gel flash chromatography eluting with EtOAc/hexanes (30:70) to give deoxy alcohol **1** (40 mg, 0.09 mmol, 96 %) as viscous oil. *R_f*(50% EtOAc/Hexane) = 0.26; [α]_D²⁵ = - 34 (*c* 0.25, CH₂Cl₂); IR (thin film, cm⁻¹) 3449, 2963, 2928, 1726, 1703, 1459, 1170, 1019, 940, 898; ¹H NMR (600 MHz, CDCl₃) δ 4.74 (d, *J* = 2.4 Hz, 1H), 4.67 (ddd, *J* = 8.4, 5.4, 1.8 Hz, 1H), 3.70 (dq,

 $J = 9.0, 6.0 \text{ Hz}, 1\text{H}), 3.48 \text{ (d, } J = 10.2 \text{ Hz}, 1\text{H}), 3.28 \text{ (ddd, } J = 10.2, 9.0, 4.2 \text{ Hz}, 1\text{H}), 3.10 \text{ (ddd, } J = 18.6, 12.6, 2.4 \text{ Hz}, 1\text{H}), 2.79 \text{ (dq, } J = 10.2, 7.2 \text{ Hz}, 1\text{H}), 2.55 \text{ (dqd, } J = 13.2, 6.6, 4.2 \text{ Hz}, 1\text{H}), 2.12 \text{ (ddd, } J = 18.6, 5.4, 2.4 \text{ Hz}, 1\text{H}), 1.93-1.81 \text{ (m, 5H)}, 1.78-1.67 \text{ (m, 2H)}, 1.45-1.37 \text{ (m, 2H)}, 1.25-1.22 \text{ (m, 1H)}, 1.21 \text{ (d, } J = 6.6 \text{ Hz}, 3\text{H}), 1.17 \text{ (d, } J = 7.2 \text{ Hz}, 3\text{H}), 1.15 \text{ (d, } J = 7.2 \text{ Hz}, 3\text{H}), 1.05 \text{ (d, } J = 6.6 \text{ Hz}, 3\text{H}), 0.91 \text{ (d, } J = 7.2 \text{ Hz}, 3\text{H}), 0.87 \text{ (t, } J = 7.2 \text{ Hz}, 3\text{H}); 1^{3}\text{C} \text{ NMR} \text{ (150 MHz, CDCl}_{3}) \delta 214.3, 174.5, 99.2, 80.8, 72.0, 70.2, 45.9, 44.3, 34.7, 34.3, 33.8, 32.2, 29.9, 29.6, 27.6, 24.2, 20.6, 19.2, 18.0, 17.5, 17.0, 15.5, 10.7; CIHRMS calcd for <math>[C_{23}H_{40}O_6 + \text{Na}]^+$: 435.2722, Found 435.2717.

(2):

To a CH_2Cl_2 (0.2 mL) solution of allylic alcohol **17** (10 mg, 0.02 mmol) at 0 °C was added a solution of (50% w/v) of *N*-methyl morpholine *N*-oxide / water (10 µL). Crystalline OsO_4 (2.0 mg, 10 mol %) was added and the reaction was stirred for 12 h. The reaction mixture was concentrated and was pipetted directly on to a silica gel column using CH_2Cl_2 (1 mL) in three portions. Impurities were eluted with ether and the product was eluted with MeOH/EtOAc/hexanes (10:40:50). Pure fractions were combined and concentrated to

afford triol **2** (9.7 mg, 0.02 mmol, 91 %) as viscous oil. R_f (90% EtOAc/MeOH) = 0.30; $[\alpha]_D^{25} = -39 (c = 0.3, MeOH);$ IR (thin film, cm⁻¹) 3390, 2965, 2929, 1723, 1702, 1458, 1173, 1062, 899, 735; ¹H NMR (600 MHz, CDCl₃) δ 4.80 (d, J = 1.2 Hz, 1H), 4.67 (ddd, J = 8.4, 4.8, 1.8 Hz, 1H), 4.02 (br s, 1H), 3.78 (dq, J = 9.6, 6.0 Hz, 1H), 3.71 (m, 1H), 3.51 (d, J = 10.2 Hz, 1H), 3.47 (dd, J = 10.2, 9.0 Hz, 1H), 3.09 (ddd, J = 18.6, 12.0, 2.4 Hz, 1H), 2.81 (dq, J = 10.2, 6.6 Hz, 1H), 2.54 (dqd, J = 13.8, 7.2, 4.2 Hz, 1H), 2.43 (m, 1H), 2.23 (m, 1H), 2.14 (ddd, J = 18.6, 5.4, 2.4 Hz, 1H), 1.88-1.82 (m, 2H), 1.55-1.50 (m, 2H), 1.47-1.42 (m, 1H), 1.35-1.30 (m, 1H), 1.29 (d, J = 6.0 Hz, 3H), 1.27-1.25(m, 1H), 1.22 (d, J = 6.6 Hz, 3H), 1.16 (d, J = 6.6 Hz, 3H), 1.06 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 7.2 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 214.1, 174.2, 102.6, 89.5, 81.1, 73.4, 71.8, 71.2, 68.4, 45.8, 44.1, 34.6, 34.2, 33.8, 32.3, 24.2, 20.6, 19.2, 18.0, 17.1, 16.9, 15.5, 10.7; CIHRMS calcd for [C₂₃H₄₀O₈ + Na]⁺: 467.2620, Found 467.2616.

(18):

To a solution of allylic alcohol **17** (60 mg, 0.15 mmol) in dry CH₂Cl₂ (1.0 mL) at 0 °C, was added pyridine (59 µL, 0.73 mmol), DMAP (3.6 mg), and methyl chloroformate (57 mg,

0.73 mmol). After stirring 24 h at room temperature, water (1 mL) was added and then the mixture was extracted with EtOAc (3 x 5 mL), dried (Na₂SO₄), concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with EtOAc/hexane (20:80) to give carbonate 18 (60.2 mg, 0.13 mmol, 88%) as viscous oil. R_f (50% EtOAc/hexane) = 0.50; $[\alpha]_D^{25} = -12$ (c = 0.5, CH₂Cl₂); IR (thin film, cm⁻¹) 2962, 2924, 1752, 1701, 1459, 1261, 1045, 970; ¹H NMR (600 MHz, CDCl₃) δ 5.94 (d, J = 10.2 Hz, 1H), 5.85 (ddd, J = 9.6, 2.4, 2.4 Hz, 1H), 5.01 (br s, 1H), 4.85 (dd, J = 9.0, 1.8 Hz, 1H), 4.69 (ddd, J = 8.4, 5.4, 1.8 Hz, 1H), 3.95 (dq, J = 9.0, 6.0 Hz, 1H), 3.81 (s, 3H), 3.65 (dd, J = 10.2, 1.2 Hz, 1H), 3.10 (ddd, J = 18.6, 12.6, 2.4 Hz, 1H), 2.84 (dq, J = 10.2, 6.6 Hz)1H), 2.54 (dqd, J = 13.8, 7.2, 4.2 Hz, 1H), 2.12 (ddd, J = 18.6, 6.0, 2.4 Hz, 1H), 1.90-1.81 (m, 3H), 1.54-1.49 (m, 2H), 1.43 (ddd, J = 13.8, 5.4, 1.8 Hz, 1H), 1.36 (ddd, J = 13.8, 12.6)4.2 Hz, 1H), 1.24 (d, J = 6.0 Hz, 3H), 1.21 (d, J = 7.2 Hz, 3H), 1.17-1.12(m, 1H), 1.15 (d, J = 7.2 Hz, 3H), 1.05 (d, J = 6.6 Hz, 3H), 0.92 (d, J = 7.2 Hz, 3H), 0.88 (t, J = 7.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ214.5, 174.5, 155.5, 129.3, 127.8, 96.5, 87.2, 81.1, 74.5, 64.9, 55.2, 46.1, 44.4, 34.9, 34.2, 34.0, 32.4, 24.4, 20.8, 19.5, 18.1, 17.8, 17.3, 15.4, 11.0; CIHRMS calcd for $[C_{25}H_{40}O_8 + Na]^+$: 491.2620, Found 491.2615.

To a mixture of carbonate 18 (55 mg, 0.12 mmol), allylpalladium chloride dimer (6.4 mg, 0.02 mmol) and 1,4-bis(diphenylphosphino)butane (30 mg, 0.08 mmol) in anhydrous THF (0.20 mL) was added TMSN₃ (77 µg, 0.59 mmol) under argon atmosphere. The solution was stirred at room temperature for 3 h. Then the mixture was evaporated under reduced pressure, purified using silica gel flash chromatography eluting with EtOAc/hexane (15:85) to give allylic azide 19 (43 mg, 0.10mmol, 85%) as viscous oil. R_f (30%) EtOAc/hexane) = 0.60; $[\alpha]_D^{25}$ = -45 (c = 1, CH₂Cl₂); IR (thin film, cm⁻¹) 2968, 2934, 2103, 1725, 1703, 1459, 1170, 1041, 984; ¹H NMR (600 MHz, CDCl₃) δ 5.96 (d, J = 10.8 Hz, 1H), 5.93 (ddd, J = 9.6, 2.4, 2.4 Hz, 1H), 5.00 (br s, 1H), 4.69 (ddd, J = 7.2, 6.6, 2.4 Hz, 1H), 3.74 (dg, J = 10.2, 6.6 Hz, 1H), 3.57 (d, J = 10.2 Hz, 1H), 3.55 (d, J = 9.6 Hz, 1H), 3.10 (ddd, J = 18.6, 12.6, 2.4 Hz, 1H), 2.84 (dq, J = 10.8, 7.2 Hz, 1H), 2.55 (dqd, J = 13.2, 1H)6.6, 4.2 Hz, 1H), 2.13 (ddd, J = 18.6, 6.0, 2.4 Hz, 1H), 1.90-1.81 (m, 3H), 1.54-1.49 (m, 2H), 1.46-1.41 (m, 1H), 1.35 (ddd, *J* = 13.2, 13.2, 4.2), 1.30 (d, *J* = 6.6 Hz, 3H), 1.21 (d, *J* = 7.2 Hz, 3H), 1.19-1.12 (m, 1H), 1.15 (d, J = 6.6 Hz, 3H), 1.05 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 7.2 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 214.5, 174.5,

128.6, 128.2, 94.4, 87.3, 81.1, 66.3, 60.2, 46.1, 44.4, 34.9, 34.2, 34.0, 32.4, 24.4, 20.8, 19.5, 18.3, 18.1, 17.4, 15.5, 11.0; CIHRMS calcd for $[C_{23}H_{37}N_3O_5 + Na]^+$: 458.2630, Found 458.2625.

(21):

To a solution of allylic alcohol **17** (15 mg, 0.03 mmol) and methanesulphonyl chloride (4 μ L, 0.05 mmol) in dry CH₂Cl₂ (0.3 mL) at 0 °C, was added triethylamine (6 μ L, 0.04 mmol). After stirring 8 h at room temperature, water (1 mL) was added and then the mixture was extracted with EtOAc (3 x 5 mL), dried (Na₂SO₄), concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with EtOAc/hexane (15:85) to give mesylate **20**. To a solution mesylate **20** (15 mg, 0.12 mmol) in THF (0.3 mL) was added NaN₃ (3.0 mg, 0.05 mmol) under argon atmosphere. The solution was stirred at room temperature for 2 h. Then the mixture was evaporated under reduced pressure, purified using silica gel flash chromatography eluting with EtOAc/hexane (20:80) to give allylic azide **21** (10 mg, 0.02 mmol, 80%) as viscous oil. *R*_f (30% EtOAc/hexane) = 0.55; [α]_D²⁵ = + 73 (*c* = 0.3, CH₂Cl₂); IR (thin film, cm⁻¹) 2967,

2932, 2100, 1725, 1702, 1460, 1170, 1041, 972; ¹H NMR (600 MHz, CDCl₃) δ 6.16 (dd, J = 10.2, 3.0 Hz, 1H), 6.10 (dd, J= 10.2, 6.0 Hz, 1H), 5.06 (d, J= 2.4 Hz, 1H), 4.69 (ddd, J= 7.8, 5.4, 2.4 Hz, 1H), 4.22 (qd, J= 6.0, 2.4 Hz, 1H), 3.62 (d, J= 10.2 Hz, 1H), 3.13 (dd, J= 5.4, 2.4 Hz, 1H), 3.09 (ddd, J = 18.6, 12.6, 2.4 Hz, 1H), 2.84 (dq, J = 10.2, 6.6 Hz, 1H), 2.54 (dqd, J = 12.6, 7.2, 4.2 Hz, 1H), 2.13 (ddd, J = 18.6, 5.4, 3.0 Hz, 1H), 1.91-1.82 (m, 3H), 1.54-1.49 (m, 2H), 1.47-1.42 (m, 1H), 1.38-1.30 (m, 1H), 1.32 (d, J = 6.0 Hz, 3H), 1.25 (d, J = 6.6 Hz, 3H), 1.20-1.14 (m, 1H), 1.14 (d, J = 7.2 Hz, 3H), 1.07 (d, J = 6.6 Hz, 3H), 0.89 (t, J = 7.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 214.2, 174.2, 129.8, 124.9, 96.3, 86.7, 80.9, 66.4, 55.1, 45.9, 44.2, 34.7, 34.1, 33.8, 32.2, 24.2, 20.6, 19.3, 17.9, 17.2, 16.9, 15.3, 10.8; CIHRMS calcd for [C₂₃H₃₇N₃O₅ + Na] ⁺: 458.2630, Found 458.2631.

(3):

To a solution of allylic azide **19** (15 mg, 0.04 mmol) in dry MeOH (0.3 mL) was added Pd/C (10 mg) and the mixture was stirred under H_2 at an 100 psi pressure for 8 h at room temperature. The catalyst was filtered off through a short pad of Celite, concentrated

under reduced pressure. The resulting crude product was pipetted directly on to a silica gel column using CH₂Cl₂ (1 mL) in three portions. Impurities were eluted with ether and the product was eluted with MeOH/EtOAc/hexanes (200:40:40). Pure fractions were combined and concentrated to afford deoxy amine 3 (13.2 mg, 0.03 mmol, 92 %) as viscous oil. R_f (90% EtOAc/MeOH) = 0.30; $[\alpha]_D^{25}$ = - 38 (c = 0.5, MeOH); IR (thin film, cm⁻¹) 3345, 2964, 2929, 1728, 1705, 1457, 1167, 1016, 983, 897; ¹H NMR (600 MHz, CDCl₃) δ 4.71 (d, J=3.0 Hz, 1H), 4.61 (ddd, J=9.0, 4.2, 1.8 Hz, 1H), 3.92 (dq, J=9.6, 6.6) Hz, 1H), 3.40 (d, J = 10.2 Hz, 1H), 3.12 (ddd, J = 19.2, 12.6, 2.4 Hz, 1H), 2.79 (dq, J =10.2, 7.2 Hz, 1H), 2.48 (dqd, J = 13.8, 7.2, 4.2 Hz, 1H), 2.24-2.18 (m, 5H), 1.96-1.89 (m, 2H), 1.79-1.63 (m, 4H), 1.55-1.45 (m, 3H), 1.36 (ddd, J = 14.4, 12.0, 4.2 Hz, 1H), 1.15 (d, J = 7.2 Hz, 3H), 1.14 (d, J = 6.0 Hz, 3H), 1.12 (d, J = 7.2 Hz, 3H), 1.10-1.04 (m, 1H), 1.03 (d, J = 6.0 Hz, 3H), 0.90 (d, J = 7.2 Hz, 3H), 0.86 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) *S*217.1, 176.6, 101.2, 82.6, 68.9, 66.8, 49.7, 47.4, 45.9, 41.0, 36.3, 35.9, 35.2, 33.7, 31.5, 25.4, 21.7, 19.5, 19.2, 17.8, 16.2, 16.1, 11.3; CIHRMS calcd for $[C_{23}H_{41}NO_5 +$ H]⁺: 412.3063, Found 412.3061.

The allylic azide compound 19 (20 mg, 0.04 mmol) and o-NO₂C₆H₄SO₂NHNH₂ (56 mg, 0.27 mmol) were dissolved in 0.4 mL of CH₂Cl₂ in a round bottom flask and cooled 0 °C under nitrogen atmosphere then triethylamine (60 µL, 0.36 mmol) was added and the reaction mixture was stirred at 0 °C for 12 hours and on completion, as monitored by TLC. The reaction mixture was concentrated and was pipetted directly on to a silica gel column using CH₂Cl₂ (1 mL) in three portions. The crude product was purified using silica gel flash chromatography eluting with EtOAc/hexanes (15:85) to give deoxy azide 4 (18 mg, 0.04 mmol, 90 %) as viscous oil. R_f (50% EtOAc/Hexane) = 0.65; $[\alpha]_D^{25} = -13$ (c = 0.5, CH₂Cl₂); IR (thin film, cm⁻¹) 2965, 2930, 1724, 1701, 1459, 1171, 1019, 974; ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3) \delta 4.78 \text{ (d}, J = 3.0 \text{ Hz}, 1\text{H}), 4.68 \text{ (ddd}, J = 6.6, 6.0, 2.4 \text{ Hz}, 1\text{H}), 3.73 \text{ (dg}, J = 0.0 \text{ Hz}, 100 \text$ J = 9.6, 6.6 Hz, 1H), 3.48 (d, J = 10.8 Hz, 1H), 3.10 (ddd, J = 19.2, 12.6, 2.4 Hz, 1H), 3.04 (ddd, J = 10.8, 10.2, 4.2 Hz, 1H), 2.80 (dq, J = 10.8, 7.2 Hz, 1H), 2.56 (dqd, J = 13.2, 6.6, J)4.2 Hz, 1H), 2.14 (ddd, J = 19.2, 5.4, 3.0 Hz, 1H), 1.97-1.75(m, 7H), 1.54-1.49 (m, 2H), 1.48-1.42 (m, 1H), 1.39-1.33 (m, 1H), 1.21 (d, J = 6.6 Hz, 3H), 1.18 (d, J = 6.0 Hz, 3H), 1.17 (d, J = 6.6 Hz, 3H), 1.18-1.11(m, 1H), 1.03 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 7.2 Hz, 1.17 Hz)

3H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ214.3, 174.4, 99.1, 88.3, 80.9,
68.2, 62.6, 45.9, 44.3, 34.7, 34.5, 33.8, 32.2, 29.5, 24.5, 23.9, 20.6, 19.2, 18.3, 18.0, 17.0,
15.5, 10.7; CIHRMS calcd for [C₂₃H₃₉ N₃O₅ + Na]⁺: 460.2787, Found 460.2783.

(5):

To a CH₂Cl₂ (0.3 mL) solution of allylic azide **19** (15 mg, 0.3 mmol) at 0 °C was added a solution of (50% w/v) of *N*-methyl morpholine *N*-oxide / water (17 µL). Crystalline OsO₄ (1.0 mg, 10 mol %) was added and the reaction was stirred for 12 h. The reaction mixture was concentrated and was pipetted directly on to a silica gel column using CH₂Cl₂ (1 mL) in three portions. Impurities were eluted with ether and the product was eluted with MeOH/EtOAc/hexanes (2:48:50). Pure fractions were combined and concentrated to afford diol **5** (15 mg, 0.03 mmol, 90 %) as viscous oil. R_f (50% EtOAc/hexanes) = 0.20; $[\alpha]_D^{25} = -62$ (c = 0.5, MeOH); IR (thin film, cm⁻¹) 3411, 2968, 2933, 2108, 1725, 1703, 1459, 1174, 1051, 997, 900; ¹H NMR (600 MHz, CDCl₃) δ 4.81 (d, J = 1.2 Hz, 1H), 4.67 (ddd, J = 7.8, 5.4, 2.4 Hz, 1H), 4.00 (ddd, J = 4.8, 3.0, 1.8 Hz, 1H), 3.78 (ddd, J = 10.2, 7.2, 3.0 Hz, 1H), 3.69 (dd, J = 10.2, 6.6 Hz, 1H), 3.51 (d, J = 10.2 Hz, 1H), 3.31 (dd, J = 10.2, 7.2,

9.6 Hz, 1H), 3.07 (ddd, J = 18.6, 6.6, 2.4 Hz, 1H), 2.80 (dq, J = 10.2, 6.6 Hz, 1H), 2.55 (m, 2H), 2.35 (br s, 1H), 2.14 (ddd, J = 19.2, 6.0, 3.0 Hz, 1H), 1.87-1.80 (m, 3H), 1.54-1.49 (m, 2H), 1.44 (dddd, J = 14.4, 12.0, 5.4, 3.0 Hz, 1H), 1.32 (d, J = 6.0 Hz, 3H), 1.28-1.24 (m, 1H), 1.20 (d, J = 6.6 Hz, 3H), 1.18-1.14 (m, 1H), 1.15 (d, J = 6.0 Hz, 3H), 1.03 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 7.2 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 214.1, 174.1, 102.4, 89.6, 81.1, 70.5, 67.4, 65.8, 60.3, 45.8, 44.1, 34.6, 34.2, 33.7, 32.3, 24.2, 20.5, 19.2, 18.0, 17.0, 15.6, 14.1, 10.7; CIHRMS calcd for [C₂₃H₃₉N₃O₇ + Na]⁺: 492.2685, Found 492.2684.

(6):

To a solution of dihydroxy azide **5** (10 mg, 0.02 mmol) in dry MeOH (0.2 mL) was added Pd/C (2 mg) and the mixture was stirred under H₂ at an 100 psi pressure for 6 h at room temperature. The catalyst was filtered off through a short pad of Celite, concentrated under reduced pressure. The resulting crude product was pipetted directly on to a silica gel column using CH_2Cl_2 (1 mL) in three portions. Impurities were eluted with ether and the product was eluted with MeOH/EtOAc/hexanes (20:40:40). Pure fractions were combined

and concentrated to afford dihydroxy amine 6 (8.5 mg, 0.02 mmol, 90 %) as viscous oil. R_f $(90\% \text{ EtOAc/MeOH}) = 0.20; \left[\alpha\right]_{D}^{25} = -130 \ (c = 0.5, \text{ MeOH}); \text{ IR (thin film, cm}^{-1}) 3373,$ 2967, 2933, 1721, 1702, 1458, 1366, 1173, 1032, 984; ¹H NMR (600 MHz, CDCl₃) δ4.71 (d, J = 2.4 Hz, 1H), 4.63 (ddd, J = 8.4, 4.8, 1.8 Hz, 1H), 3.85 (dd, J = 3.0, 1.8 Hz, 1H), 3.69(dq, J = 9.6, 6.6 Hz, 1H), 3.48 (dd, J = 10.2, 3.0 Hz, 1H), 3.42 (d, J = 10.8 Hz, 1H), 3.13(ddd, J = 19.2, 12.0, 2.4 Hz, 1H), 2.83 (dq, J = 10.2, 6.6 Hz, 1H), 2.76 (dd, J = 10.2, 9.6 Hz, 1H)1H), 2.49 (ddd, J = 13.8, 6.6, 4.2 Hz, 1H), 2.21 (ddd, J = 19.2, 5.4, 3.0 Hz, 1H), 1.88 (dd, J = 12.6, 12.6 Hz, 1H), 1.81-1.73 (m, 3H), 1.57-1.47 (m, 3H), 1.55 (ddd, J = 13.8, 12.0, 4.2 Hz, 1H), 1.20 (d, J = 7.2 Hz, 3H), 1.19 (d, J = 6.0 Hz, 3H), 1.16 (d, J = 7.2 Hz, 3H), 1.13-1.10 (m, 1H), 1.04 (d, J = 6.6 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ217.1, 176.3, 105.5, 82.7, 72.1, 71.5, 71.1, 55.3, 47.4, 45.8, 35.9, 35.8, 35.1, 33.6, 31.4, 25.4, 21.7, 19.5, 18.3, 18.1, 17.6, 16.0, 11.3; CIHRMS calcd for $[C_{23}H_{41}NO_7 + H]^+$: 444.2961, Found 444.2955.

(22):

A CH_2Cl_2 (0.5 mL) solution of Boc-enone **13b** (60 mg, 0.26 mmol) and 10-deoxymethynolide alcohol **16** (52 mg, 0.0.17 mmol) was cooled to 0 °C. A CH_2Cl_2

(0.5 mL) solution of Pd₂(dba)₃[•]CHCl₃ (9 mg, 5 mol%) and PPh₃ (9 mg, 20 mol%) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at 0 °C for 12 hours. The reaction mixture was quenched with 2 mL of satd. aq. NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 10% EtOAc/hexanes to give enone 22 (62 mg, 87%): Pale yellow solid, mp: 142.7-143.1 °C; R_f (33%) EtOAc/hexanes) = 0.65; $[\alpha]^{25}_{D}$ = +8.85 (c = 0.7, CHCl₃); IR (thin film, cm⁻¹) 2966, 2934, 1722, 1701, 1458, 1372, 1168, 1141, 1095, 1052, 986, 905; ¹H NMR (600 MHz, CDCl₃) δ 6.90 (dd, J = 10.2, 1.2 Hz, 1H), 6.10 (dd, J = 10.2, 1.8 Hz, 1H), 5.34 (ddd, J = 1.8, 1.2, 1.2)Hz, 1H), 4.65 (ddd, J = 7.8, 5.4, 1.8 Hz, 1H), 4.10 (qd, J = 6.6, 1.8 Hz, 1H), 3.70 (dd, J =10.2, 0.6 Hz, 1H), 3.08 (ddd, J = 18.6, 12.6, 2.4 Hz, 1H), 2.77 (dg, J = 10.2, 6.6 Hz, 1H), 2.53 (dqd, J = 14.4, 6.6, 4.2 Hz, 1H), 2.12 (ddd, J = 18.6, 5.4, 2.4 Hz, 1H), 1.91 (ddd, J = 12.53) 12.6, 12.6, 1.8 Hz, 1H), 1.87-1.80 (m, 2H), 1.53-1.47 (m, 2H), 1.41 (d, J = 6.6 Hz, 3H), 1.44-1.35 (m, 2H), 1.29 (d, J = 6.6 Hz, 3H), 1.26-1.20 (m, 1H), 1.15 (d, J = 6.6 Hz, 3H), 1.06 (d, J = 6.6 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ214.4, 196.7, 175.1, 147.5, 129.2, 98.7, 87.9, 81.5, 75.4, 45.9, 43.3, 35.0, 34.5, 34.0, 32.5, 24.5, 20.8, 19.5, 18.1, 18.0, 16.1, 15.9, 11.0; HRMS (ESI) calcd. for $[C_{23}H_{36}O_6 + Na]^+$: 431.2410, Found 431.2409.

The enone compound 22 (150 mg, 0.36 mmol) was dissolved in 0.8 mL of CH₂Cl₂ and 0.2 mL MeOH in round bottom flask and cooled -78 °C then NaBH₄ (15 mg, 0.41 mmol) was added and the reaction mixture was stirred at -78 °C for 3 hours and on completion, monitored by TLC, reaction mixture was diluted with ether and was quenched with 5 mL of satd. aq. NaHCO₃, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 15% EtOAc/hexanes to give allylic alcohol 23 (141 mg, 93%): white solid; R_f (33% EtOAc/hexanes) = 0.32; $[\alpha]^{25}_{D}$ = + 5.46 (c = 1.5, CHCl₃); IR (thin film, cm⁻¹) 3487, 2967, 2934, 2878, 1722, 1703, 1458, 1373, 1333, 1168, 1059, 982, 909; ¹H NMR (600 MHz, CDCl₃) δ 5.91 (ddd, J = 10.2, 1.8, 1.2 Hz, 1H), 5.79 (ddd, J =10.2, 1.2, 1.2 Hz, 1H), 5.08 (br s, 1H), 4.65 (ddd, J = 7.2, 4.8, 1.8 Hz, 1H), 3.93 (ddd, J =7.8, 7.8, 1.8 Hz, 1H), 3.61 (d, J = 10.2 Hz, 1H), 3.47 (dq, J = 7.8, 6.6 Hz, 1H), 3.08 (ddd, J = 18.6, 12.6, 1.8 Hz, 1H), 2.74 (dq, J = 10.2, 6.6 Hz, 1H), 2.52 (dqd, J = 13.8, 6.6, 4.2 Hz, 1H), 2.10 (ddd, J = 19.2, 5.4, 2.4 Hz, 1H), 1.91-1.80 (m, 3H), 1.77 (d, J = 7.2 Hz, 1H), 1.54-1.48 (m, 2H), 1.44-1.37 (m, 2H), 1.33 (d, J = 6.0 Hz, 3H), 1.31 (d, J = 6.6 Hz, 3H), 1.20-1,16 (m, 1H), 1.14 (d, J = 7.2 Hz, 3H), 1.02 (d, J = 6.6 Hz, 3H), 0.92 (d, J = 7.2 Hz,

(23):

3H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ214.7, 175.4, 133.4, 128.9,
99.8, 87.6, 81.3, 74.8, 69.3, 45.9, 43.4, 35.0, 34.6, 33.9, 32.5, 24.4, 20.8, 19.5, 18.3, 18.1,
17.8, 16.1, 11.0; HRMS (ESI) calcd. for [C₂₃H₃₈O₆ + Na]⁺: 433.2566, Found 433.2565.

(24):

A flask was charged with dry N-methyl morpholine (NMM) 0.8 mL, triphenyl phosphine (95 mg, 0.36 mmol) and was cooled to -30 °C under Ar atmosphere. Diisopropylazodicarboxylate (70 µL, 0.33 mmol) was added and the reaction was stirred for 25 min, Allylic alcohol **23** (45 mg, 0.11 mmol) was added and the reaction mixture was stirred for 10 min, followed by addition of o-nitrobenzenesulfonyl hydrazide (NBSH) (72 mg, 0.33 mmol). The reaction was stirred at -30 °C for 2h and was monitored by TLC, upon consumption of starting material, warm up to room temperature and stirred for another 4h. The reaction mixture was diluted with ether (10 mL) and was quenched with 5 mL of satd aq NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 5% EtOAc/hexanes to give **24** (26 mg, 60%) of viscous product: $R_f = 0.84$ (33% EtOAc/hexanes); $[\alpha]_{D}^{25} = + 22.39$ (c = 1.0, CHCl₃); IR (thin film, cm⁻¹) 2967, 2933,

2882, 1725, 1703, 1458, 1367, 1153, 1067, 1032, 901; ¹H NMR (600 MHz, CDCl₃) δ 5.64 (dddd, J = 9.6, 4.8, 2.4, 2.4 Hz, 1H), 5.56 (dddd, J = 9.6, 2.4, 1.2, 1.2 Hz, 1H), 4.67 (ddd, J = 7.8, 5.4, 2.4 Hz, 1H), 4.63 (dd, J = 8.4, 3.6 Hz, 1H), 4.29-4.27 (m, 1H), 3.59 (dd, J = 10.2, 1.2 Hz, 1H), 3.11 (ddd, J = 19.2, 12.6, 2.4 Hz, 1H), 2.76 (dq, J = 10.2, 6.6 Hz, 1H), 2.54 (dqd, J = 14.4, 6.6, 4.2 Hz, 1H), 2.22-2.11 (m, 2H), 2.11 (ddd, J = 12.6, 5.4, 2.4 Hz, 1H), 1.93-1.82 (m, 3H), 1.55-1.50 (m, 2H), 1.46-1.41 (m, 1H), 1.38 (ddd, J = 14.4, 12.6, 4.2 Hz, 1H), 1.33 (d, J = 7.2 Hz, 3H), 1.25 (d, J = 6.6 Hz, 3H), 1.19-1.14 (m, 1H), 1.15 (d, J = 6.6 Hz, 3H), 1.02 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 7.2 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 214.7, 175.6, 131.5, 122.9, 101.2, 86.1, 81.1, 71.4, 46.0, 43.4, 35.0, 34.6, 33.9, 32.5, 31.4, 24.5, 21.1, 20.8, 19.5, 18.2, 17.9, 16.1, 11.0; HRMS (ESI) calcd for [C₂₃H₃₈O₅ + Na] ⁺: 417.2612, Found 417.2613.

(7):

To a CH_2Cl_2 (0.7 mL) solution of ene **24** (17 mg, 0.04 mmol) at 0 °C was added a solution of (50% w/v) of *N*-methyl morpholine *N*-oxide/water (70 µL). Catalytic amount of crystalline OsO₄ (~1 mg) was added and the reaction was stirred for 12 h. The reaction mixture was concentrated and was pipetted directly on to a silica gel column using CH_2Cl_2

(1 mL) in three portions. Chromatography eluting with 35% EtOAc/hexanes afforded diol 7 (16.3 mg, 87%): amorphous white solid; $R_f(50\% \text{ EtOAc/hexane}) = 0.24$; $[\alpha]^{25}_{D} = +27.49$ (c = 0.47, MeOH); IR (thin film, cm⁻¹) 3477, 3348, 2930, 1721, 1708, 1458, 1329, 1169, 1081, 1066, 1017, 902, 734; ¹H NMR (600 MHz, CDCl₃) δ 4.80 (dd, J = 9.6, 1.8 Hz, 1H), 4.65 (ddd, J = 6.0, 5.4, 1.8 Hz, 1H), 4.10 (ddd, J = 3.0, 3.0, 2.5 Hz, 1H), 3.67 (dq, J = 9.6, 6.6 Hz, 1H), 3.56 (d, J = 10.2 Hz, 1H), 3.28 (dd, J = 9.6, 3.0 Hz, 1H), 3.09 (ddd, J = 18.6, J)12.6, 2.4 Hz, 1H), 2.72 (dq, J = 10.8, 6.6 Hz, 1H), 2.53 (dqd, J = 13.8, 6.6, 4.2 Hz, 1H), 2.15 (ddd, J = 13.8, 3.6, 2.4 Hz, 1H), 2.11 (ddd, J = 16.8, 5.4, 2.4 Hz, 1H), 1.90-1.80 (m, 3H), 1.68 (ddd, J = 13.8, 10.2, 3.0 Hz, 1H), 1.54- 1.49 (m, 2H), 1.44- 1.39 (m, 1H), 1.35 (ddd, J = 13.8, 12.6, 3.6 Hz, 1H), 1.29 (d, J = 6.0 Hz, 3H), 1.28 (d, J = 6.0 Hz, 3H),1.18-1.14 (m, 1H), 1.14 (d, J = 7.2 Hz, 3H), 1.03 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 7.2 Hz, 3H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 214.7, 175.5, 99.7, 86.8, 81.2, 73.3, 69.6, 68.5, 45.9, 43.4, 38.2, 35.0, 34.6, 33.9, 32.5, 24.5, 20.8, 19.5, 18.23, 18.16, 17.8, 16.0, 11.0; HRMS (ESI) calcd for $[C_{23}H_{40}O_7 + Na]^+$: 451.2666, Found 451.2669.

(25):

A CH₂Cl₂ (1.3 mL) solution of Boc-enone 13c (303 mg, 1.32 mmol) and 10-deoxymethynolide alcohol 16 (198 mg, 0.66 mmol) was cooled to 0 °C. A CH₂Cl₂ (0.2 mL) solution of Pd₂(dba)₃[•]CHCl₃ (34 mg, 0.03 mmol) and PPh₃ (34.6 mg, 0.13 mmol) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at 0 °C for 5 hours. The reaction mixture was quenched with 5 mL of satd. aq. NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure to give a residue. Chromatograph on silica gel eluting with 15% EtOAc/hexanes to give enone 25 (230 mg, 85%): white solid, mp: 156.9-157.6 °C; $R_f = 0.63$ (33% EtOAc/hexanes); $[\alpha]^{25}_{D} = -19.21$ (c = 0.51, CHCl₃); IR (thin film, cm⁻¹) 2966, 2935, 1722, 1700, 1459, 1371, 1171, 1101, 1079, 1017, 973; ¹H NMR (600 MHz, CDCl₃) δ 6.83 (dd, J = 10.2, 3.6 Hz, 1H), 6.07 (d, J= 10.2 Hz, 1H), 5.25 (d, J = 3.6 Hz, 1H), 4.67 (ddd, J = 7.2, 6.6, 2.4 Hz, 1H), 4.60 (q, J = 3.6 Hz, 2H), 4.60 (q, J = 3.6 Hz, 2H), 4.60 (q, J 6.6 Hz, 1H), 3.69 (dd, J = 10.2, 0.6 Hz, 1H), 3.08 (ddd, J = 19.2, 12.6, 2.4 Hz, 1H), 2.81 (dg, J = 10.2, 6.6 Hz, 1H), 2.54 (dgd, J = 12.6, 6.6, 4.2 Hz, 1H), 2.13 (ddd, J = 18.6, 5.4, 2.4)Hz, 1H), 1.91-1.81 (m, 3H), 1.55-1.50 (m, 2H), 1.45-1.40 (m, 1H), 1.35 (d, J = 7.2 Hz, 3H), 1.32 (ddd, J = 13.8, 12.0, 4.2 Hz, 1H), 1.30 (d, J = 6.6 Hz, 3H), 1.27-1.22 (m, 1H), 1.15 (d, J = 0.6 Hz, 1.2)J = 7.2 Hz, 3H), 1.06 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ214.3, 196.9, 174.7, 142.7, 127.1, 95.9, 88.4, 81.5, 70.9, 45.8, 43.3, 35.1, 34.5, 34.0, 32.5, 24.4, 20.8, 19.5, 18.1, 17.8, 15.7, 15.1, 11.0; HRMS (ESI) calcd for $[C_{23}H_{36}O_6 + Na]^+$: 431.2404, Found: 431.2410.

The enone compound 25 (23 mg, 0.057 mmol) was dissolved in 0.4 mL of CH₂Cl₂ and 0.3 mL MeOH in round bottom flask and cooled -78 °C, then NaBH₄ (2.2 mg, 0.057 mmol) was added and the reaction mixture was stirred at -78 °C for 3 hours and on completion, monitored by TLC, reaction mixture was diluted with ether and was quenched with 2 mL of satd. aq. NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure to give a residue. Chromatograph on silica gel eluting with 25% EtOAc/hexanes gave allylic alcohol 26 (19 mg, 83%): white solid, mp: 155.0-156.5 °C; R_f = 0.38 (33% EtOAc/hexanes); $[\alpha]^{25}_{D} = + 34.5$ (c = 0.41, MeOH); IR (thin film, cm⁻¹) 3500, 2964, 2936, 1725, 1703, 1460, 1172, 1096, 1026, 1004, 900; ¹H NMR (600 MHz, CDCl₃) δ 5.95 (ddd, J = 10.2, 1.2, 1.2 Hz, 1H), 5.79 (dt, J = 10.2, 2.4 Hz, 1H), 5.02 (brs, 1H), 4.68 (ddd, J = 7.8, 6.0, 2.4 Hz, 1H), 3.82 (ddd, J = 9.0, 7.2, 1.2 Hz, 1H), 3.67 (dq, J =9.0, 6.0 Hz, 1H), 3.64 (dd, J = 10.2, 0.6 Hz, 1H), 3.10 (ddd, J = 19.2, 12.6, 2.4 Hz, 1H), 2.67 (dq, J = 10.2, 6.6 Hz, 1H), 2.54 (dqd, J = 13.2, 6.6, 4.2 Hz, 1H), 2.12 (ddd, J = 18.6, 4.8, 2.4 Hz, 1H), 1.92-1.81 (m, 3H), 1.55-1.50 (m, 2H), 1.46 (d, J = 7.8 Hz, 1H), 1.45-1.40 (m, 1H), 1.36 (ddd, J = 14.4, 12.6, 4.2 Hz, 1H), 1.30 (d, J = 6.6 Hz, 3H), 1.28 (d, J = 6.6 Hz,

3H), 1.22-1.17 (m, 1H), 1.15 (d, J = 6.6 Hz, 3H), 1.04 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 7.2 Hz, 3H), 0.90 (dd, J = 7.8, 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 214.5, 175.0, 133.8, 126.2, 96.6, 86.7, 81.2, 69.5, 68.5, 45.9, 43.2, 35.2, 34.7, 34.0, 32.5, 24.4, 20.8, 19.5, 18.1, 17.9, 17.8, 15.7, 11.0; HRMS (ESI) calcd for [C₂₃H₃₈O₆ + Na] ⁺: 433.2561, Found: 433.2566.

(8):

The enol compound **26** (6 mg, 0.015 mmol) and *o*-NO₂C₆H₄SO₂NHNH₂ (25 mg, 0.12 mmol) were dissolved in 0.5 mL of CH₂Cl₂ in a round bottom flask and cooled 0 °C under nitrogen atmosphere then triethylamine (20 µL, 0.15 mmol) was added and the reaction mixture was stirred at 0 °C for 12 hours and on completion, as monitored by TLC. The reaction mixture was concentrated and was pipetted directly on to a silica gel column using CH₂Cl₂ (1 mL) in three portions. Chromatography on silica gel eluting with 25% EtOAc/hexanes gave deoxy alcohol **8** (5.4 mg, 90 %) as viscous oil. *R_f* (50% EtOAc/Hexane) = 0.59; $[\alpha]^{25}_{D}$ = + 3.75 (*c* = 0.16, CHCl₃); IR (thin film, cm⁻¹) 3490, 2964, 2933, 1728, 1702, 1459, 1330, 1262, 1171, 1004, 898; ¹H NMR (600 MHz, CDCl₃) δ 4.79
(d, J = 3.0 Hz, 1H), 4.66 (ddd, J = 7.8, 6.0, 2.4 Hz, 1H), 3.72 (dq, J = 9.0, 6.6 Hz, 1H), 3.52 (dd, J = 10.2, 0.6 Hz, 1H), 3.30 (ddd, J = 9.6, 9.6, 4.8 Hz, 1H), 3.10 (ddd, J = 18.6, 12.6, 2.4 Hz, 1H), 2.77 (dq, J = 10.2, 6.6 Hz, 1H), 2.53 (dqd, J = 13.8, 6.6, 4.2 Hz, 1H), 2.12 (ddd, J = 19.2, 5.4, 2.4 Hz, 1H), 1.93-1.82 (m, 4H), 1.78-1.69 (m, 2H), 1.54-1.50 (m, 2H), 1.45 (d, J = 5.4 Hz, 1H), 1.45-1.40 (m, 1H), 1.35 (ddd, J = 13.8, 12.6, 4.2 Hz, 1H), 1.29 (d, J = 7.2 Hz, 3H), 1.26 (brs, 1H), 1.23 (d, J = 6.0 Hz, 3H), 1.20-1.16 (m, 1H), 1.16 (d, J = 7.2 Hz, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 7.2 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 214.5, 175.3, 99.2, 87.9, 81.3, 72.2, 70.4, 46.0, 43.6, 35.3, 34.8, 33.9, 32.5, 30.1, 27.6, 24.5, 20.8, 19.5, 18.2, 18.1, 17.9, 15.9, 11.0; HRMS (ESI) calcd for [C₂₃H₄₀O₆ + Na]⁺: 435.2717, Found: 435.2723

(9):

To a CH₂Cl₂ (0.3 mL) solution of allylic alcohol **26** (5.8 mg, 0.014 mmol) at 0 °C was added a solution of (50% w/v) of *N*-methyl morpholine *N*-oxide / water (10 μ L). Crystalline OsO₄ (2.0 mg, 0.008) was added and the reaction was stirred for 12 h. The reaction mixture was concentrated and was pipetted directly on to a silica gel column using

CH₂Cl₂ (1 mL) in three portions. Impurities were eluted with ether and the product was eluted with 80% EtOAc/hexanes. Pure fractions were combined and concentrated to afford triol 9 (5.3 mg, 85 %) as viscous oil. R_f (70% EtOAc/Hexane) = 0.10; $[\alpha]^{25}_D$ = + 22.4 (c = 0.25, CHCl₃); IR (thin film, cm⁻¹) 3380, 2964, 2931, 1720, 1702, 1458, 1372, 1261, 1174, 1062, 1036, 989, 803, 731; ¹H NMR (600 MHz, CDCl₃) δ 4.82 (d, J = 1.2 Hz, 1H), 4.65 (ddd, J = 6.6, 6.6, 1.8 Hz, 1H), 4.02 (ddd, J = 4.8, 3.0, 1.8 Hz, 1H), 3.80 (dq, J = 9.6, 6.0 Hz)1H), 3.73 (ddd, J = 9.6, 7.2, 3.6 Hz, 1H), 3.54 (d, J = 10.2 Hz, 1H), 3.47 (ddd, J = 9.6, 9.0, 1H)3.0 Hz, 1H, 3.07 (ddd, J = 18.6, 12.6, 2.4 Hz, 1H), 2.76 (dg, J = 10.2, 6.6 Hz, 1H), 2.53 Hz, 10.2 Hz(ddd, J = 13.2, 7.2, 4.2 Hz, 1H), 2.46 (d, J = 7.2 Hz, 1H), 2.21 (d, J = 3.0 Hz, 1H), 2.16 (d, J = 10.2 Hz, 1H), 2.16 (d, J = 1J = 5.4 Hz, 1H), 2.13 (ddd, J = 19.2, 6.0, 2.4 Hz, 1H), 1.89-1.84 (m, 3H), 1.55-1.50 (m, 2H), 1.30 (d, J = 6.0 Hz, 3H), 1.28 (d, J = 7.2 Hz, 3H), 1.26 (br s, 1H), 1.23-1.20 (m, 1H), 1.16 (d, J = 6.6 Hz, 3H), 1.04 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6Hz, 3H), 0.90 (t, J = 7.2Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ214.3, 174.9, 102.7, 89.6, 81.5, 73.7, 71.9, 71.4, 68.6, 45.9, 43.6, 35.2, 34.6, 33.9, 32.6, 24.5, 20.8, 19.5, 18.2, 18.0, 17.4, 15.8, 11.0; HRMS (ESI) calcd for $[C_{23}H_{40}O_8 + Na]^+$: 467.2615, Found: 467.2621.

To a solution of allylic alcohol 26 (124.8 mg, 0.30 mmol) and methanesulphonyl chloride (40 μ L, 0.52 mmol) in dry CH₂Cl₂ (1.0 mL) at 0 °C, was added triethylamine (55 μ L, 0.73 mmol). After stirring 7 h at room temperature, water (1 mL) was added and then the mixture was extracted with EtOAc (3 x 5 mL), dried (Na₂SO₄), concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 20% EtOAc/hexane to give mesylate C (134 mg, 90%) as viscous oil; $R_f = 0.45$ (33%) EtOAc/hexanes); $[\alpha]^{25}_{D} = +50.66$ (c = 0.45, CHCl₃); IR (thin film, cm⁻¹) 2966, 2934, 1720, 1701, 1459, 1359, 1175, 1013, 952, 901; ¹H NMR (600 MHz, CDCl₃) δ6.06 (ddd, J = 10.2, 1.2, 1.2 Hz, 1H), 5.90 (ddd, J = 10.2, 2.4, 1.8 Hz, 1H), 5.05 (brs, 1H), 4.82 (dddd, J = 9.0, 1.8, 1.8, 1.2 Hz, 1H), 4.68 (ddd, J = 6.6, 6.6, 1.8 Hz, 1H), 3.97 (dq, J = 9.0, 6.0 Hz, 1H), 3.63 (d, J = 9.6 Hz, 1H), 3.09 (ddd, J = 18.6, 12.6, 2.4 Hz, 1H), 3.06 (s, 3H), 2.77 (dq, J = 10.2, 6.6 Hz, 1H), 2.54 (dqd, J = 14.4, 6.6, 4.2 Hz, 1H), 2.12 (ddd, J = 18.6, 5.4, 2.4 Hz, 1H), 1.91-1.82 (m, 3H), 1.55-1.50 (m, 2H), 1.46-1.41 (m, 1H), 1.35 (ddd, *J* = 13.8, 12.0, 3.6 Hz, 1H), 1.32 (d, J = 6.0 Hz, 3H), 1.26 (d, J = 7.2 Hz, 3H), 1.24-1.18 (m, 1H), 1.16 (d, J = 7.2 Hz, 3H), 1.04 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 7.2 Hz, 3H), 0.91 (dd, J = 7.8, 7.2 Hz,

3H); ¹³C NMR (150 MHz, CDCl₃) δ214.4, 174.9, 129.1, 128.7, 96.4, 87.2, 81.3, 76.8,
65.1, 45.9, 43.1, 38.9, 35.2, 34.6, 34.0, 32.5, 24.4, 20.8, 19.5, 18.1, 17.9, 17.7, 15.7, 11.0;
HRMS (ESI) calcd for [C₂₄H₄₀O₈S + Na]⁺: 511.2336, Found: 511.2342.

(27):

To a solution mesylate C (127.5 mg, 0.26 mmol) in 2.0 mL of actone-H₂O (6:1) was added NaN₃ (84.8 mg, 1.31 mmol) under argon atmosphere. The solution was stirred at room temperature for 12 h. Water (1 mL) was added and then the mixture was extracted with EtOAc (3 x 5 mL), dried (Na₂SO₄), and then concentrated under reduced pressure to give a residue. Chromatography on silica gel eluting with 5% EtOAc/hexane gave allylic azide **27** (95 mg, 84%): white amorphous solid; R_f = 0.61 (33% EtOAc/hexane); $[\alpha]^{25}_{D}$ = -152.59 (*c* = 0.27, CHCl₃); IR (thin film, cm⁻¹) 2964, 2934, 2100, 1722, 1702, 1458, 1172, 1093, 1013, 900; ¹H NMR (600 MHz, CDCl₃) δ 6.17 (dd, *J* = 9.6, 3.0 Hz, 1H), 6.10 (ddd, *J* = 9.6, 5.4, 1.2 Hz, 1H), 5.08 (d, *J* = 2.4 Hz, 1H), 4.68 (ddd, *J* = 6.6, 6.6, 1.8 Hz, 1H), 4.22 (qd, *J* = 6.6, 2.4 Hz, 1H), 3.68 (d, *J* = 10.2 Hz, 1H), 3.14 (dd, *J* = 5.4, 2.4 Hz, 1H), 3.08 (ddd, *J* = 18.6, 12.6, 2.4 Hz, 1H), 2.76 (dq, *J* = 10.2, 6.6 Hz, 1H), 2.55 (dqd, *J* = 14.4, 6.6, 4.2 Hz, 1H), 3.68 (ddd, *J* = 10.2, 6.6 Hz, 1H), 2.55 (dqd, *J* = 14.4, 6.6, 4.2 Hz, 1Hz, 1H), 3.68 (ddd, *J* = 10.2, 6.6 Hz, 1H), 3.55 (dqd, *J* = 14.4, 6.6, 4.2 Hz, 1Hz, 1Hz), 3.66 (ddd, *J* = 10.2, 6.6 Hz, 1Hz), 3.55 (dqd, *J* = 14.4, 6.6, 4.2 Hz, 1Hz), 3.66 (ddd, *J* = 10.2, 6.6 Hz, 1Hz), 3.55 (dqd, *J* = 14.4, 6.6, 4.2 Hz), 3.55 (dqdz) = 14.4, 6.6, 4.2 Hz]

1H), 2.12 (ddd, J = 18.6, 5.4, 2.4 Hz, 1H), 1.91-1.81 (m, 3H), 1.54-1.50 (m, 2H), 1.45-1.40 (m, 1H), 1.35 (ddd, J = 13.8, 12.6, 4.2 Hz, 1H), 1.32 (d, J = 6.6 Hz, 3H), 1.26 (d, J = 6.6 Hz, 3H), 1.24-1.19 (m, 1H), 1.15 (d, J = 6.6 Hz, 3H), 1.06 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 7.2 Hz, 3H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 214.3, 174.8, 130.0, 125.2, 96.5, 86.8, 81.3, 66.7, 55.3, 45.9, 43.2, 35.2, 34.6, 34.0, 32.5, 24.4, 20.8, 19.5, 18.1, 17.9, 17.1, 15.7, 11.0; HRMS (ESI) calcd. for [C₂₃H₃₇N₃O₅ + Na] ⁺: 458.2625, Found: 458.2631.

(10):

To a solution of allylic azide **27** (86 mg, 0.19 mmol) in dry MeOH (2.0 mL) was added Pd/C (50 mg) and the mixture was stirred under H₂ at an 100 psi pressure for 7 h at room temperature. The catalyst was filtered off through a short pad of Celite, concentrated under reduced pressure. The resulting crude product was pipetted directly on to a reversed phase column eluting with 80% MeOH/H₂O to afford deoxy amine **10** (51 mg, 63 %) as viscous oil. R_f (80% MeOH /H₂O) = 0.17(reversed phase TLC); $[\alpha]^{25}_D$ = + 57.85 (c = 0.81, MeOH); IR (thin film, cm⁻¹) 3383, 2964, 2933, 2878, 1723, 1702, 1456, 1367, 1170,

1004, 899; ¹H NMR (600 MHz, CD₃OD) δ 4.85 (d, *J* = 3.0 Hz, 1H), 4.62 (ddd, *J* = 9.0, 4.2, 1.8 Hz, 1H), 4.13 (qd, *J* = 6.6, 1.8 Hz, 1H), 3.50 (dd, *J* = 10.2, 1.2 Hz, 1H), 3.15 (ddd, *J* = 19.2, 12.0, 1.8 Hz, 1H), 2.80 (dq, *J* = 9.6, 6.6 Hz, 1H), 2.76 (br s, 1H), 2.50 (dqd, *J* = 15.0, 7.2, 4.2 Hz, 1H), 2.24 (ddd, *J* = 18.6, 4.8, 2.4 Hz, 1H), 2.05 (dddd, *J* = 13.2, 13.2, 4.2, 4.2 Hz, 1H), 1.95-1.89 (m, 2H), 1.84-1.76 (m, 2H), 1.65-1.55 (m, 4H), 1.50 (dddd, *J* = 15.0, 12.0, 5.4, 3.6 Hz, 1H), 1.39 (ddd, *J* = 13.8, 12.0, 4.2 Hz, 1H), 1.26 (d, *J* = 7.2 Hz, 3H), 1.18 (d, *J* = 7.2 Hz, 3H), 1.16-1.12 (m, 1H), 1.10 (d, *J* = 6.6 Hz, 3H), 1.02 (d, *J* = 6.6 Hz, 3H), 0.93 (d, *J* = 6.6 Hz, 3H), 0.92 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CD₃OD) δ 217.1, 177.1, 101.2, 88.6, 82.9, 68.3, 49.6, 47.3, 44.8, 36.7, 35.9, 35.1, 33.7, 26.8, 25.5, 25.2, 21.7, 19.6, 18.4, 18.3, 17.6, 16.4, 11.4; HRMS (ESI) calcd for [C₂₃H₄₁NO₅ + H]⁺: 412.3058, Found 412.3061.

(28):

A CH_2Cl_2 (1.5 mL) solution of Boc-enone **13d** (366 mg, 1.60 mmol) and 10-deoxymethynolide alcohol **16** (120 mg, 0.41 mmol) was cooled to 0 °C. A CH_2Cl_2 (1.5 mL) solution of $Pd_2(dba)_3$ CHCl₃ (41 mg, 2.5 mol%) and PPh₃ (42 mg, 10 mol%) was added to the reaction mixture at 0 °C. The reaction mixture was stirred at 0 °C for 2 hours.

The reaction mixture was quenched with 10 mL of satd. aq. NaHCO₃, extracted (3 x 10 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 20% EtOAc/hexanes to give enone 28 (131 mg, 0.32 mmol, 80%) as viscous oil. R_f (50%) EtOAc/hexanes) = 0.45; $[\alpha]_D^{25}$ = -12 (c = 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 2967, 2934, 1725, 1703, 1459, 1171, 1018, 899; ¹H NMR (600 MHz, CDCl₃) δ 6.92 (dd, J = 10.2, 1.2 Hz, 1H), 6.12 (dd, J = 10.2, 1.8 Hz, 1H), 5.34 (d, J = 1.2 Hz, 1H), 4.70 (ddd, J = 7.2, 6.6, 1.8 Hz, 1H), 4.14-4.10 (m, 1H), 4.11 (m, 6.6, 1.2), 3.68 (dd, J = 10.2, 1.2 Hz, 1H), 3.11 (ddd, J = 18.6, 12.6, 2.4 Hz, 1H), 2.92 (dq, J = 10.2, 6.6 Hz, 1H), 2.56 (dqd, J = 13.8, 6.6, J)4.2 Hz, 1H), 2.14 (ddd, J = 18.6, 5.4, 2.4 Hz, 1H), 1.89-1.82 (m, 3H), 1.55-1.51 (m, 2H), 1.48-1.39 (m, 2H), 1.42 (d, J = 6.6 Hz, 3H), 1.26 (d, J = 6.6 Hz, 3H), 1.18-1.14 (m, 1H), 1.13 (d, J = 6.6 Hz, 3H), 1.09 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 7.2 Hz, 3H), 0.90 (t, J = 7.2Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ214.5, 196.6, 174.4, 147.5, 129.2, 98.6, 88.2, 81.3, 75.3, 46.0, 44.1, 34.6, 34.3, 34.0, 32.4, 24.4, 20.8, 19.4, 18.1, 17.1, 15.9, 15.8, 11.0; CIHRMS calcd for $[C_{23}H_{36}O_6 + Na]^+$: 431.2409, Found 431.2403.

The enone compound 28 (90 mg, 0.22 mmol) was dissolved in 0.3 mL of CH_2Cl_2 and 0.3 mL MeOH in round bottom flask and cooled -78 °C then NaBH₄ (9.2 mg, 0.24 mmol) was added and the reaction mixture was stirred at -78 °C for 3 hours and on completion, monitored by TLC, reaction mixture was diluted with ether and was quenched with 2 mL of satd. aq. NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 25% EtOAc/hexanes to give allylic alcohol 29 (77 mg, 0.19 mmol, 85%) as viscous oil. R_f (50% EtOAc/hexanes) = 0.35; $[\alpha]_D^{25} = +7$ (c = 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 3329, 2939, 22834, 1721, 1697, 1456, 1172, 1032, 900; ¹H NMR (600 MHz, CDCl₃) δ 5.92 (ddd, J = 10.2, 2.4, 1.8 Hz, 1H), 5.82 (ddd, J = 10.2, 1.8, 1.81.2 Hz, 1H), 5.06 (br s, 1H), 4.70 (ddd, J = 5.4, 5.4, 2.4 Hz, 1H), 3.93 (ddd, J = 7.8, 7.2, 1.8Hz, 1H), 3.60 (d, J = 10.8 Hz, 1H), 3.50 (m, 1H), 3.10 (ddd, J = 18.6, 12.6, 2.4 Hz, 1H), 2.85 (dq, J = 10.2, 6.6 Hz, 1H), 2.55 (dqd, J = 13.8, 6.6, 4.2 Hz, 1H), 2.11 (ddd, J = 18.6, 5.4, 3.0 Hz, 1H), 1.88-1.82 (m, 3H), 1.54 -1.50 (m, 2H), 1.46-1.40 (m, 1H), 1.33 (d, J = 6.0 Hz, 3H), 1.27-1.23 (m, 1H), 1.23 (d, *J* = 6.6 Hz, 3H), 1.14-1.09 (m, 1H), 1.13 (d, *J* = 7.2 Hz, 3H), 1.09 (d, J = 6.0 Hz, 3H), 0.93 (d, J = 7.2 Hz, 3H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C

(29):

NMR (150 MHz, CDCl₃) δ214.5, 174.5, 132.8, 128.9, 99.4, 87.5, 80.9, 74.5, 69.0, 45.9, 44.0, 34.5, 34.2, 33.8, 32.2, 24.2, 20.6, 19.2, 18.1, 18.0, 16.9, 15.5, 10.7; CIHRMS calcd for [C₂₃H₃₈O₆ + Na⁺]: 433.2566, Found 433.2559.

(30):

A flask was charged with dry N-methyl morpholine (NMM) 0.8 mL, triphenyl phosphine (126 mg, 0.48 mmol) and was cooled to -30 °C under Ar atmosphere. Diethylazodicarboxylate (69 µL, 0.44 mmol) was added and the reaction was stirred for 25 min, Allylic alcohol **29** (60 mg, 0.15 mmol) was added in a 1M solution of NMM and the reaction mixture was stirred for 10 min, followed by addition of o-nitrobenzenesulfonyl hydrazide (NBSH) (89 mg, 0.44 mmol). The reaction was stirred at -30 °C for 2h and was monitored by TLC, upon consumption of starting material, warm up to room temperature and stirred for another 4h. The reaction mixture was diluted with ether (10 mL) and was quenched with 5 mL of satd aq NaHCO₃, extracted (3 x 5 mL) with Et₂O, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified using silica gel flash chromatography eluting with 30% EtOAc/hexanes to give **30** (29 mg, 0.07 mmol, 40%) of viscous product: R_f (50% EtOAc/hexanes) = 0.60; $[\alpha]_D^{25} = + 20$ (c = 0.5, CH₂Cl₂);

IR (thin film, cm⁻¹) 2959, 2932, 1756, 1700, 1429, 1131, 1017, 985; ¹H NMR (600 MHz, CDCl₃) δ 5.64 (dddd, J = 10.2, 4.8, 2.4, 2.4 Hz, 1H), 5.57 (dt, J = 10.2, 1.2 Hz, 1H), 4.69 (ddd, J = 7.8, 5.4, 2.4 Hz, 1H), 4.60 (dd, J = 8.4, 3.6 Hz, 1H), 4.27 (m, 1H), 3.54 (d, J = 10.2 Hz, 1H), 3.12 (ddd, J = 19.2, 12.0, 2.4 Hz, 1H), 2.85 (dd, J = 10.2, 6.6 Hz, 1H), 2.57 (dqd, J = 13.8, 6.6, 4.2 Hz, 1H), 2.20-2.15 (m, 2H), 2.11 (ddd, J = 19.2, 5.4, 3.0 Hz, 1H), 1.89-1.81 (m, 3H), 1.55-1.44 (m, 4H), 1.24 (d, J = 7.2 Hz, 3H), 1.23 (d, J = 6.6 Hz, 3H), 1.22 (d, J = 6.6 Hz, 3H), 1.14-1.08 (m, 1H), 1.13 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 7.2 Hz, 3H), 0.89 (d, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 214.6, 174.6, 131.3, 122.7, 100.9, 86.4, 80.8, 71.1, 45.9, 44.1, 34.5, 34.1, 33.8, 32.1, 31.0, 24.2, 20.7, 20.6, 19.2, 18.0, 16.9, 15.4, 10.7; CIHRMS calcd for [C₂₃H₃₈O₅ + Na]⁺: 417.2617, Found 417.2613.

(11):

To a CH_2Cl_2 (0.5 mL) solution of ene **30** (10 mg, 0.03 mmol) at 0 °C was added a solution of (50% w/v) of *N*-methyl morpholine *N*-oxide / water (10 µL). Crystalline OsO₄ (0.3 mg, 10 mol %) was added and the reaction was stirred for 12 h. The reaction mixture was concentrated and was pipetted directly on to a silica gel column using CH_2Cl_2 (1 mL) in three portions. Impurities were eluted with ether and the product was eluted with

MeOH/EtOAc/hexanes (10:40:50). Pure fractions were combined and concentrated to afford diol 11 (8 mg, 0.02 mmol, 70 %) as viscous oil. R_f (90% EtOAc/MeOH) = 0.20; $[\alpha]_{D}^{25} = -12$ (c = 0.5, CH₂Cl₂); IR (thin film, cm⁻¹) 3442, 2928, 2919, 1741, 1711, 1459, 1167, 1080, 989, 734; ¹H NMR (600 MHz, CDCl₃) δ 4.78 (dd, J = 9.6, 1.8 Hz, 1H), 4.67 (ddd, J = 7.8, 5.4, 1.8 Hz, 1H), 4.10 (d, J = 3.6 Hz, 1H), 3.68 (dq, J = 9.6, 6.6 Hz, 1H), 3.50(d, J = 10.8 Hz, 1H), 3.28 (dd, J = 3.6, 3.6 Hz, 1H), 3.10 (ddd, J = 18.6, 12.6, 2.4 Hz, 1H),2.80 (dq, J = 10.2, 6.6 Hz, 1H), 2.54 (dqd, J = 13.8, 6.6, 4.2 Hz, 1H), 2.49 (s, 1H), 1.29 (d, J = 5.4 Hz, 1H), 2.14 (ddd, J = 13.8, 3.6, 2.4 Hz, 1H), 2.10 (ddd, J = 18.6, 5.4, 3.0 Hz, 1H), 1.84 (m, 3H), 1.69 (ddd, J = 13.8, 10.2, 2.4 Hz, 1H), 1.53-1.48 (m, 2H), 1.45-1.38 (m,1.26 (d, J = 6.0 Hz, 3H), 1.21 (d, J = 6.6 Hz, 3H), 1.12 (d, J = 7.2 Hz, 3H), 1.10-1.05 (m, 1H), 1.06 (d, J = 6.0 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ214.6, 174.6, 99.4, 86.9, 80.8, 73.0, 69.2, 68.3, 45.9, 44.0, 37.8, 34.5, 34.1, 33.8, 32.1, 24.2, 20.6, 19.2, 17.9, 16.9, 15.4, 10.7; CIHRMS calcd for $[C_{23}H_{40}O_7 +$ Na]⁺: 451.2671, Found 451.2665.

Section C: ¹H and ¹³C NMR Spectra

P

,

