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Supplement 1. Derivation of Equations 2 and 3

Here, we translate Eq. 1 from the main text into an equation that only uses known
reactant concentrations and the species’ Gibbs energies of formation (∆fG

0
i ). We begin

by dividing the participating species into groups. Because protons are not considered as
reactants, we define the following relationship between the species:

ı = {i ∈ I(j), i ∈ protons} , (A1a)

where i ∈ I(j) indicates the species of reactant j, (i ∈ protons) protons that are part of
the reaction. With the groups defined in Eq. A1a, we can define the following relationship
between the stoichiometric coefficients of reactants and species:∑

i

si =
∑
j

∑
i∈I(j)

si +
∑

i∈protons
si. (A1b)

Using Eq. A1b we can write Eq. 1 as

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +RT

∑
j

∑
i∈I(j)

si ln ci

+
∑

i∈protons
si∆fG

0
i +RT

∑
i∈protons

si ln[H+]. (A1c)

Then we can define a relationship between reactant concentration and species concen-
tration:

ci = αij · Cj , (A1d)

where αij is the mol fraction (αij ∈ [0, 1]) of concentration of species i to the concentra-
tion of reactant j. Using Eq. A1d and Eq. A1c we eliminate the species’concentrations:

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +RT

∑
j

∑
i∈I(j)

si lnαi,j +RT
∑
j

Sj lnCj

+
∑
i

∑
i∈protons

si∆fG
0
i +RT

∑
i∈protons

si ln[H+]. (A1e)

In Eq. A1e, Cj,i indicates the reactant concentration of reactant j that belongs to species
i.

Eq. A1e may now be simplified using the concept of binding polynomials or Alberty’s
Legendre transform formalism.

Derivation using Alberty’s concept of transformed Gibbs energies of
formation

As described by Alberty (1), the ratio between a reactant concentration and one of its
species concentrations, αij , can be defined with standard transformed Gibbs energies of

1



formation:

αij =
ci
Cj

= exp

(
∆fG

′0
j −∆fG

′0
i

RT

)
, (A1f)

where ∆fG
′0
j and the ∆fG

′0
i are the standard transformed Gibbs energies of formation

for a reactant j and a species i belonging to that reactant, respectively.

Now, we can substitute αij in Eq. A1e with Eq. A1f:

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +

∑
j

∑
i∈I(j)

si

(
∆fG

′0
j −∆fG

′0
i

)
+RT

∑
j

Sj lnCj

+
∑

i∈protons
si∆fG

0
H+ +RT

∑
i∈protons

si ln[H+]. (A1g)

The goal of the following derivation is to eliminate the untransformed Gibbs formation
energy (∆fG

0
i ) values from Eq. A1g. First we expand Eq. A1g:

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +

∑
j

Sj∆fG
′0
j −

∑
j

∑
i∈I(j)

si∆fG
′0
i +RT

∑
j

Sj lnCj

+
∑

i∈protons
si∆fG

0
H+ +RT

∑
i∈protons

si ln[H+]. (A1h)

In order to expand the ∆fG
′0
i we can define the following relation:

∆fG
′0
i = ∆fG

0
i −NH,i

(
∆fG

0
H+ +RT ln[H+]

)
, (A1i)

where NH is the number of H atoms in species i, ∆fG
0
H+ is the standard Gibbs energy

of formation of a hydrogen species, and [H+] is the proton concentration.

By substituting the ∆fG
′0
i in Eq. A1h we obtain:

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +

∑
j

Sj∆fG
′0
j −

∑
j

∑
i∈I(j)

si∆fG
0
i +RT

∑
j

Sj lnCj

+
∑
j

∑
i∈I(j)

siNH,i

(
∆fG

0
H+ +RT ln[H+]

)
+

∑
i∈protons

si∆fG
0
H+ +RT

∑
i∈protons

si ln[H+]. (A1j)

Because protons are not considered as reactants, the balance of the H species in all
reactants corresponds to the change in the number of free protons:∑

i∈protons
si = −

∑
j

∑
i∈I(j)

siNH,i. (A1k)
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Using Eq. A1k and Eq. A1j we get

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +

∑
j

Sj∆fG
′0
j −

∑
j

∑
i∈I(j)

si∆fG
0
i +RT

∑
j

Sj lnCj

+
∑
j

∑
i∈I(j)

siNH,i

(
∆fG

0
H+ +RT ln[H+]

)
−
∑
j

∑
i∈I(j)

siNH,i∆fG
0
H+ −RT

∑
j

∑
i∈I(j)

siNH,i ln[H+], (A1l)

which we can simplify by eliminating the duplicate terms with ∆fG
0
i and NH,i to obtain

Eq. 2 from the main text:

∆G =
∑
j

Sj∆fG
′0
j +RT

∑
j

Sj lnCj . (2)

The derivation shown here is similar to the derivation by Alberty in his textbook in
section 4.5, and arrives at the same formulation as Eq. 2 (2).

Derivation using the concept of binding polynomials

Using binding polynomials, we can define the relationship between a reactant concen-
tration and one of its species concentration as follows (3):

αij =
ci
Cj

=

[H+]i∏
k≤i Kk(

1 +
∑N

i=1
[H+]i∏
k≤i Kk

) =

[H+]i∏
k≤i Kk

Pj([H
+])

, (A1l)

where Kk is the equilibrium constant for proton dissociation of species k (i.e., Kk =
[H+] · ck−1/ck).

Now, we can substitute αij in Eq. A1e with Eq. A1l:

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +RT

∑
j

∑
i∈I(j)

si ln

[H+]i∏
k≤i Kk

Pj([H
+])

+RT
∑
j

Sj lnCj

+
∑

i∈protons
si∆fG

0
H+ +RT

∑
i∈protons

si ln[H+]. (A1m)

In order to simplify Eq. A1m we choose to use the reference species of each reactant for
the Gibbs energy of formation, therefore we introduce ∆fG

0
iref

, and the denominator of
the expression for αij evaluates to 1. With these substitutions we obtain Eq. 3 from the
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main text:

∆G =
∑
j

Sj∆fG
0
iref
−RT

∑
j

Sj lnPj([H
+]) +RT

∑
j

Sj lnCj

+
∑

i∈protons
si∆fG

0
H+ +RT

∑
i∈protons

si ln[H+]. (3)
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Supplement 2. Derivation of Equations 6 and 7

Here, we translate Eq. 4 from the main text into an equation that only uses known re-
actant concentrations and the (known) species’ energies of formation (∆fG

0
i ). We begin

by dividing the participating species into groups. Because protons are not considered as
reactants, and because we want to consider the species that are transported, we define
the following relationship between the species:

ı = {i ∈ I(j), i ∈ protons, i ∈ transported} , (A2a)

where i ∈ I(j) indicates the species of reactant j, (i ∈ protons) that are part of the
reaction and not transported, and (i ∈ transported) are all the known species that are
transported. With the groups defined in Eq. A2a, we can define the following relationship
between the stoichiometric coefficients of reactants and species:∑

i

si =
∑
j

∑
i∈I(j)

si +
∑

i∈protons
si +

∑
i∈transported

si, (A2b)

Using Eq. A2b we can write Eq. 4 as

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +RT

∑
j

∑
i∈I(j)

si ln ci

+
∑
i

∑
i∈protons

si∆fG
0
H+,i

+RT
∑

i∈protons
si ln[H+]i

+
∑
i

∑
i∈transported

si∆fG
0
i +RT

∑
i∈transported

si ln ci

+ F∆ϕm

∑
i∈inside

sizi, (A2c)

where for the (i ∈ protons) part ci is replaced by [H+]i, which is the proton concentration
in its compartment, and ∆fG

0
i is replaced by ∆fG

0
H+,i

, which is the Gibbs energy of

formation of a proton in its specific compartment.

Then we can define a relationship between reactant concentration and species concen-
tration:

ci = αij · Cj , (A2d)

where αij is the mol fraction (αij ∈ [0, 1]) of concentration of species i to the concen-
tration of reactant j. Using Eq. A2d and Eq. A2c we eliminated the species’ concentra-
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tions:

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +RT

∑
j

∑
i∈I(j)

si lnαi,j +RT
∑
j

Sj lnCj

+
∑
i

∑
i∈protons

si∆fG
0
H+,i

+RT
∑

i∈protons
si ln[H+]i

+
∑
i

∑
i∈transported

si∆fG
0
i +RT

∑
i∈transported

si lnαi,j +RT
∑

i∈transported
si lnCj,i

+ F∆ϕm

∑
i∈inside

sizi. (A2e)

In Eq. A2e, Cj,i indicates the reactant concentration of reactant j that belongs to species
i.

Eq. A2e may now be simplified using the concept of binding polynomials or Alberty’s
Legendre transform formalism.

Derivation using Alberty’s concept of transformed Gibbs energies of
formation

As described by Alberty (1), the ratio between a reactant concentration and one of its
species concentrations, αij , can be defined with standard transformed Gibbs energies of
formation:

αij =
ci
Cj

= exp

(
∆fG

′0
j −∆fG

′0
i

RT

)
, (A2f)

where ∆fG
′0
j and the ∆fG

′0
i are the standard transformed Gibbs energies of formation

for a reactant j and a species i belonging to that reactant, respectively.

Now, we can substitute αij in Eq. A2e with Eq. A2f:

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +

∑
j

∑
i∈I(j)

si

(
∆fG

′0
j −∆fG

′0
i

)
+RT

∑
j

Sj lnCj

+
∑

i∈protons
si∆fG

0
H+,i

+RT
∑

i∈protons
si ln[H+]i

+
∑

i∈transported
si∆fG

0
i +

∑
i∈transported

si

(
∆fG

′0
j −∆fG

′0
i

)
+RT

∑
i∈transported

si lnCj,i

+ F∆ϕm

∑
i∈inside

sizi. (A2g)

The goal of the following derivation is to eliminate the untransformed Gibbs formation
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energy (∆fG
0
i ) values from Eq. A2g. First we expand Eq. A2g:

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +

∑
j

Sj∆fG
′0
j −

∑
j

∑
i∈I(j)

si∆fG
′0
i +RT

∑
j

Sj lnCj

+
∑

i∈protons
si∆fG

0
H+,i

+RT
∑

i∈protons
si ln[H+]i

+
∑

i∈transported
si∆fG

0
i +

∑
i∈transported

si∆fG
′0
j −

∑
i∈transported

si∆fG
′0
i +RT

∑
i∈transported

si lnCj,i

+ F∆ϕm

∑
i∈inside

sizi. (A2h)

In order to expand the ∆fG
′0
i we can define the following relation:

∆fG
′0
i = ∆fG

0
i −NH,i

(
∆fG

0
H+,i

+RT ln[H+]i

)
, (A2i)

where NH is the number of H atoms in species i, and ∆fG
0
H+,i

is the standard energy of

formation of a hydrogen species in the compartment of species i.

Eq. A2h now becomes:

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +

∑
j

Sj∆fG
′0
j −

∑
j

∑
i∈I(j)

si∆fG
0
i +RT

∑
j

Sj lnCj

+
∑
j

∑
i∈I(j)

siNH,i

(
∆fG

0
H+,i

+RT ln[H+]i

)
+

∑
i∈protons

si∆fG
0
H+,i

+RT
∑

i∈protons
si ln[H+]i

+
∑

i∈transported
si∆fG

0
i +

∑
i∈transported

si∆fG
′0
j −

∑
i∈transported

si∆fG
0
i

+
∑

i∈transported
siNH,i

(
∆fG

0
H+,i

+RT ln[H+]i

)
+RT

∑
i∈transported

si lnCj,i

+ F∆ϕm

∑
i∈inside

sizi. (A2j)

Because protons are not considered as reactants, the balance of the H species in all
reactants corresponds to the change in the number of free protons:∑

i∈protons
si = −

∑
j

∑
i∈I(j)

siNH,i. (A2k)
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Using Eq. A2k and Eq. A2j we get

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +

∑
j

Sj∆fG
′0
j −

∑
j

∑
i∈I(j)

si∆fG
0
i +RT

∑
j

Sj lnCj

+
∑
j

∑
i∈I(j)

siNH,i

(
∆fG

0
H+,i

+RT ln[H+]i

)
−
∑
j

∑
i∈I(j)

siNH,i∆fG
0
H+,i
−RT

∑
j

∑
i∈I(j)

siNH,i ln[H+]i

+
∑

i∈transported
si∆fG

0
i +

∑
i∈transported

si∆fG
′0
j −

∑
i∈transported

si∆fG
0
i

+
∑

i∈transported
siNH,i

(
∆fG

0
H+,i

+RT ln[H+]i

)
+RT

∑
i∈transported

si lnCj,i

+ F∆ϕm

∑
i∈inside

sizi, (A2l)

which we can simplify by eliminating the duplicate terms with ∆fG
0
i and NH,i to obtain

Eq. 6 from the main text:

∆G =
∑
j

Sj∆fG
′0
j +RT

∑
j

Sj lnCj +
∑

i∈transported
si∆fG

′0
j

+
∑

i∈transported
siNH,i

(
∆fG

0
H+,i

+RT ln[H+]i

)
+RT

∑
i∈transported

si lnCj,i

+ F∆ϕm

∑
i∈inside

sizi. (6)

Derivation using the concept of binding polynomials

Using binding polynomials, we can define the relationship between a reactant concen-
tration and one of its species concentration as follows (2):

αij =
ci
Cj

=

[H+]i∏
k≤i Kk(

1 +
∑N

i=1
[H+]i∏
k≤i Kk

) =

[H+]i∏
k≤i Kk

Pj([H
+])

, (A2l)

where Kk is the equilibrium constant for proton dissociation of species k (i.e., Kk =
[H+] · ck−1/ck).
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Now, we can substitute αij in Eq. A2e with Eq. A2l:

∆G =
∑
j

∑
i∈I(j)

si∆fG
0
i +

∑
j

∑
i∈I(j)

si ln

[H+]i∏
k≤i Kk

Pj([H
+])

+RT
∑
j

Sj lnCj

+
∑

i∈protons
si∆fG

0
H+,i

+RT
∑

i∈protons
si ln[H+]i

+
∑

i∈transported
si∆fG

0
i +RT

∑
i∈transported

si ln

[H+]i∏
k≤i Kk

Pj([H
+])

+RT
∑

i∈transported
si lnCj,i

+ F∆ϕm

∑
i∈inside

sizi. (A2m)

In order to simplify Eq. A2m we choose to use the reference species of each reactant
for the Gibbs energy of formation, therefore we introduce ∆fG

0
iref

, and the denominator
of the expression for αij evaluates to 1. This substitution cannot be made for the
(i ∈ transported) part, where we consider a specifically transported species. With these
substitutions we obtain Eq. 7 from the main text:

∆G =
∑
j

Sj∆fG
0
iref
−RT

∑
j

Sj lnPj([H
+]) +RT

∑
j

Sj lnCj

+
∑

i∈protons
si∆fG

0
H+,i

+RT
∑

i∈protons
si ln[H+]i

+
∑

i∈transported
si∆fG

0
i +RT

∑
i∈transported

si ln

[H+]i∏
k≤i Kk

Pj([H
+])

+RT
∑

i∈transported
si lnCj,i

+ F∆ϕm

∑
i∈inside

sizi. (7)
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Supplement 3. Examples and Data Sources

With the derived two formulas we can calculate the change in Gibbs energy of various
biochemical transport and/or reaction processes. This supplement treats two examples
of a transport/reaction process to make clear how to make use of the two formulations.
We also present two tables with an overview of the data used in the examples that are
shown in the main text. In the last two sections we show where to obtain necessary data
that we use in the equations and how to correct the calculations for ionic strength.

ATP synthase

The process of generating ATP in a cell can be done by the ATP synthase complex
where ADP is converted into ATP by using the proton gradient over the mitochondrial
membrane. The overall biochemical equation of this process can be written as:

ADPin + 4H+
out + Pi,in 
 ATPin + 3H+

in + H2Oin (A4a)

Equation (A4a) contains both reactants (ADP, Pi, ATP and H2O) and species (H+). In
this case the protons are transported, while the reactants are participating in a biochem-
ical reaction that takes place in a single compartment (in). We can break up equation
(A4a) into two separate reactions:

4H+
out 
 4H+

in

ADPin + H+
in + Pi,in 
 ATPin + H2Oin (A4b)

If we would know the concentrations of each of the separate species, we could calculate
the ∆G by generating a balanced reaction equation for the reaction part of Eq. A4b in
terms of chemical species:

ADP3−
in + H+

in + HPO2−
4 in 
 ATP4−

in + H2O
0
in,

and using Eq. 4 from the main text:

∆G =
∑
i

si∆fG
0
i + RT

∑
i

si ln ci + F∆ϕm

∑
i∈inside

sizi. (A4c)

For our example we have all the species specific data given in Tab. 1. Using these data
we can make the following calculation:

∆G = − 1 · −1906.13 − 4 · 0 − 1 · 0 − 1 · −1096.10 + 1 · −2768.10 + 4 · 0 + 1 · −237.19

+ RT ln

(
2.00 × 10−4 · (1.00 × 10−7)4 · 1

1.99 × 10−4 · (3.16 × 10−7)4 · 1.00 × 10−7 · 3.77 × 10−3

)
+ F · −1.80 × 10−1 · 4 · +1

= − 30.15 kJ mol−1 (A4d)

1



Table 1: Species data for ATP synthase reaction.

Species ∆fG
0 ci (M)

ATP4− -2768.10 2.00×10−4 Iin 0 M
HATP3− -2811.48 7.96×10−4 Iout 0 M
H2ATP2− -2838.18 3.79×10−6 T 298.15 K
ADP3− -1906.13 1.99×10−4 F 96.5 kC mol−1

HADP2− -1947.10 3.00×10−4 ϕm -1.80×10−1 V
H2ADP− -1971.98 6.85×10−7 R 8.31×10−3 kJ K−1 mol−1

HPO2−
4 -1096.10 3.77×10−3

H2PO−4 -1137.30 6.23×10−3

H2O
0

-237.19 1.00
H+

in 0.00 1.00×10−7

H+
out 0.00 3.16×10−7

In order to calculate the ∆G of this process based on reactant concentrations we will use
the formulations that we proposed in the main text. From the two separate reactions in
Eq. A4b we can define the different reactants and species that need to be considered in
the separate parts of the equations to calculate the ∆G:∑

i∈transported
: −4H+

out,+4H+
in∑

j

: −ADPin,−Pi,in,+ATPin,+H2Oin∑
i∈protons

: −H+
in (A4e)

In order to calculate the ∆G of this process we need information on the concentrations
of the involved reactants, the pH and ionic strength in the involved compartments and
the Gibbs energies of formation of each of the involved species. This data is summarized
in Table 2.

Now we can apply the two different equations (Eq. 6 and Eq. 7 from the main text) to
calculate the ∆G of this reaction.

Using Alberty’s Legendre transform formalism

In order to make use of the Alberty formulation we first need to calculate the standard
transformed Gibbs energies of formation for species and reactants. Note that for sim-
plicity we assume the ionic strength (I) to be zero in this example. To incorporate ionic
strength we can correct ∆fG

0
i using Eq. A4y. Also note that a measured pH incorpo-

rates the ionic strength and temperature. Therefore when calculating the [H+] by using
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Table 2: Overview of input data required for ∆G calculation of ATP synthase

Parameter Value Unit Parameter Value Unit

∆fG
0
ADP3− -1906.13 kJ mol−1 CATP,in 1 mM

∆fG
0
HADP2− -1947.10 kJ mol−1 CADP,in 0.5 mM

∆fG
0
H2ADP− -1971.98 kJ mol−1 CPi,in 10 mM

∆fG
0
ATP4− -2768.10 kJ mol−1 CH2O,in 1000 mM

∆fG
0
HATP3− -2811.48 kJ mol−1 pKADP,1 7.18 -

∆fG
0
H2ATP2− -2838.18 kJ mol−1 pKADP,2 4.36 -

∆fG
0
HPO2−

4

-1069.10 kJ mol−1 pKATP,1 7.60 -

∆fG
0
H2PO

−
4

-1137.30 kJ mol−1 pKATP,2 4.68 -

∆fG
0
H2O

0 -237.19 kJ mol−1 pKPi,1 7.22 -

∆fG
0
H+ 0.0 kJ mol−1 pHin 7 -

pHout 6.5 -
Iin 0 M
Iout 0 M

[H+] = 10−pH, the ∆fG
0
H+ = 0. To calculate the real proton concentration, we can use

the following equation:

[H+] = exp

(
−∆fG

0
H+(I)

RT
+ ln(10−pH)

)
.

In this example we have an ionic strength of I = 0, therefore we can use the pH directly
to calculate the proton concentrations. We can calculate the standard transformed Gibbs
energies using the following equation:

∆fG
′0
i = ∆fG

0
i −NH

(
∆fG

0
H+ + RT ln

(
10−pH

))
(A4f)

Using the numbers from Table 2, we can calculate the following values:

∆fG
′0
ADP3−

in
= −1906.13 − 12 ·

(
0 + RT ln(10−7)

)
= −1426.65,

∆fG
′0
HADP2−

in
= −1427.67, ∆fG

′0
H2ADP−

in
= −1412.59,

∆fG
′0
ATP4−

in
= −2288.62, ∆fG

′0
HATP3−

in
= −2292.05,

∆fG
′0
H2ATP2−

in
= −2278.79, ∆fG

′0
HPO4

2−
in

= −1056.14,

∆fG
′0
H2PO4

−
in

= −1057.39, ∆fG
′0
H2O

0
in

= −157.28,

∆fG
′0
H+

in
= 39.96, ∆fG

′0
H+

out
= 37.10. (A4g)

From the ∆fG
′0
i values calculated in (A4s) we can now calculate the ∆fG

′0
j values for
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each reactant using the following equation:

∆fG
′0
j = −RT ln

∑
i

exp

(
−∆fG

′0
i ([H

+])

RT

)
. (A4h)

Using the numbers from Table 2, we can calculate the following values:

∆fG
′0
ADP = −RT ln

(
exp

(
1460.90

RT

)
+ exp

(
1464.77

RT

)
+ exp

(
1452.55

RT

))
= −1465.26

∆fG
′0
ATP = − 2329.37, ∆fG

′0
Pi

= −1063.53, ∆fG
′0
H2O = −162.99,

∆fG
′0
H+

in
=39.96, ∆fG

′0
H+

out
= 37.10. (A4i)

When we use Eq. 6 from the main text we can fill in the separate parts:

∆G =RT
∑
j

Sj lnCj

+
∑
j

Sj∆fG
′0
j

+ RT
∑

i∈transported
si lnCj,i

+
∑

i∈transported
si∆fG

′0
j +

∑
i∈transported

siNH,i

(
∆fG

0
H+ + RT ln[H+]i

)
+ F∆ϕm

∑
i∈inside

sizi

=RT
(
−1 ln 5 × 10−4 − 1 ln 1 × 10−2 + 1 ln 1 × 10−3 + 1 ln 1

)
+ (−1 · −1465.26 − 1 · −1063.53 + 1 · −2329.37 + 1 · −162.99)

+ RT
(
−4 · 10−6.5 + 4 · 10−7

)
+ (−4 · 37.10 + 4 · 39.96) +

(
−4 · 1 ·

(
0 + RT ln 10−6.5

)
+ 4 · 1 ·

(
0 + RT ln 10−7

))
+ F∆ϕm4 · 1

= − 30.15 kJ mol−1 (A4j)

Using the concept of binding polynomials

To make use of the binding polynomial formulation we first need to calculate the binding
polynomials. The binding polynomial is calculated with the following equation:

Pj([H
+]) = 1 +

N∑
i=1

[H+]i∏
k≤iKk

(A4k)
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The calculation of the binding polynomials for all the involved reactants is as follows.
Here we calculate the proton concentration ([H+]) from the pH:

PADP,in =1 +
10−pHin·1

KADP,1
+

10−pHin·2

KADP,1 ·KADP,2
= 2.51

PATP,in =1 +
10−pHin·1

KATP,1
+

10−pHin·2

KATP,1 ·KATP,2
= 5.00

PPi,in =1 +
10−pHin · 1

KPi,1
= 2.65

PH2O,in =1

PH+,in =1

PH+,out =1 (A4l)

Having calculated the binding polynomials, we must define the reaction (Eq. A4a) in
terms of reference species, the most unbound species for each reactant:

ADP3−
in + 4H+

out + Pi
2−
in 
 ATP4−

in + 3H+
in + H2O

0
in (A4m)

Now we fill in the equation to calculate the ∆G of the reaction based on binding poly-
nomials. Here, the ∆fG

0
iref

is the ∆fG
0 of the most unbound species for each reactant

5



in Table 2.

∆G =
∑
j

Sj∆fG
0
iref

+ RT
∑
j

Sj lnCj

−RT
∑
j

sj lnPj([H
+])

+
∑

i∈protons
si∆fG

0
H+,i

+ RT
∑

i∈protons
si ln[H+]i

+
∑

i∈transported
si∆fG

0
i + RT

∑
i∈transported

si lnCj,i

−RT
∑

i∈transported
si ln

Pj([H
+])

[H+]i∏
k≤i Kk

+ F∆ϕm

∑
i∈inside

sizi

= (−1 · −1906.13 − 1 · −1069.10 + 1 · −2768.10 + 1 · −237.19)

+ RT
(
−1 ln 5 × 10−4 − 1 ln 1 × 10−2 + 1 ln 1 × 10−3 + 1 ln 1

)
−RT (−1 ln 2.51 − 1 ln 2.65 + 1 ln 5.00 + 1 ln 1)

+ (−1 · 0) +
(
−1RT ln 10−7

)
+ (−4 · 0 + 4 · 0) + RT

(
−4 ln 10−6.5 + 4 ln 10−7

)
−RT

(
−4 ln

1
1
1

+ 4 ln
1
1
1

)
+ F∆ϕm · 4 · 1

= − 30.15 kJ mol−1 (A4n)

Acetate transport

As a second example, we consider acetate transport over a biological membrane. Because
acetate can be protonated it is a reactant with two species, Ac− and HAc0. We will
consider the following three cases of transport of acetate:

case 1 : Ac−out � Ac−in
case 2 : Ac−out + H+

out � H+
in + Ac−in

case 3 : HAc0out � HAc0in (A4o)

From the reaction equations in A4o we can define a general reaction equation with the
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Table 3: Overview of input data required for ∆G calculation of acetate transport.

Parameter Value Unit Parameter Value Unit

∆fG
0
Ac−in

-369.31 kJ mol−1 CAc,in 1 mmol L−1

∆fG
0
HAc0in

-396.45 kJ mol−1 CAc,out 10 mmol L−1

∆fG
0
Ac−out

-369.31 kJ mol−1 pKAcin 4.75 -

∆fG
0
HAc0out

-396.45 kJ mol−1 pKAcout 4.75 -

∆fG
0
H+

in

0 kJ mol−1 pHin 7 -

∆fG
0
H+

out

0 kJ mol−1 pHout 5 -

Iin 0
Iout 0

stoichiometric coefficients set as variables:

s1H
+
out + s2Ac−out + s3HAc0out 
 s4H

+
in + s5Ac−in + s6HAc0in, (A4p)

where we can define the stoichiometric matrix S with the stoichiometric coefficients in
the row and the three different cases in the columns:

S =



0 −1 0
−1 −1 0
0 0 −1
0 +1 0

+1 +1 0
0 0 +1

 , (A4q)

From reaction Eq. A4p we can directly define the reaction parts we want to consider in
calculating the ∆G:∑

i∈transported
: −s1Ac−out,−s2Ac−out,−s3H

+
out,+s4Ac−in,+s5Ac−in,+s6H

+
in∑

j

: 0

∑
i∈protons

: 0 (A4r)

In Table 3 we defined the necessary data to use the binding polynomial and Alberty
equations.

Using Alberty’s Legendre transform formalism

We first need to calculate the standard transformed Gibbs energies of formation for
species and reactants. We can calculate the standard transformed Gibbs energies using

7



Eq. 12 from the main text as follows:

∆fG
′0
Ac−,in

= ∆fG
0
Ac−,in

−NH,Ac−,in

(
∆fG

0
H+,in

+ RT ln
(
10−pHin

))
= −369.31 − 3 ·

(
0 + RT ln(10−7)

)
= −249.44,

∆fG
′0
HAc0,in

= −236.62, ∆fG
′0
Ac−,out

= −283.69,

∆fG
′0
HAc0,out

= −282.29, ∆fG
′0
H+

in
= 34.25, ∆fG

′0
H+

out
= 28.54. (A4s)

From the ∆fG
′0
i values calculated in (A4s) we can now calculate the ∆fG

′0
j values for

each reactant using Eq. 13 from the main text:

∆fG
′0
Ac,in = −RT ln

(
exp

(
−∆fG

′0
Ac−,in

RT

)
+ exp

(
−∆fG

′0
HAc0,in

RT

))

= −RT ln

(
exp

(
249.44

RT

)
+ exp

(
236.62

RT

))
= −249.46

∆fG
′0
Ac,out = − 284.81, ∆fG

′0
H+

in
= 34.25, ∆fG

′0
H+

out
= 28.54. (A4t)

When we use Eq. 20 from the main text we can fill in the separate parts based on the
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separate parts as defined in Eq. A4r:

∆G =RT
∑
j

Sj lnCj

+
∑
j

Sj∆fG
′0
j

+ RT
∑

i∈transported
si lnCj,i

+
∑

i∈transported
si∆fG

′0
j

+
∑

i∈transported
siNH,i

(
∆fG

0
H+,i

+ RT ln[H+]i

)
+ F∆ϕm

∑
i∈inside

sizi

=0

+ 0

+ RT (s1 ln 10−5 + s2 ln 10 × 10−3 + s3 ln 10 × 10−3

+ s4 ln 10−7 + s5 ln 1 × 10−3 + s6 ln 1 × 10−3)

+ s1 · 28.54 + s2 · −284.81 + s3 · −284.81

+ s4 · 34.25 + s5 · −249.46 + s6 − 249.46

+ (s1 · 1 + s2 · 3 + s3 · 4) ·
(
0 + RT ln 10−5

)
+ (s4 · 1 + s5 · 3 + s6 · 4) ·

(
0 + RT ln 10−7

)
+ 0 (A4u)

The outcomes of Eq. A4u in each of the cases as described in reaction Eq. A4o (i.e.
using the stoichiometric coefficients of the matrix S defined in (A4q)) are 12.76, -16.02
and -16.02 kJ mol−1 for cases 1, 2 and 3 respectively.

Using the concept of binding polynomials

When we use the binding polynomial formulation we first need to calculate the binding
polynomials. The binding polynomial is calculated using the following equation (see
Eq. 10 from the main text):

Pj([H
+]) = 1 +

N∑
i=1

[H+]i∏
k≤iKk

(A4v)
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The calculation of the binding polynomials for all the involved reactants is as follows.
Here we calculate the proton concentration ([H+]) from the pH:

PAc,in =1 +
10−pHin·1

KAc,in
= 1.01

PAc,out =1 +
10−pHin·1

KAc,out
= 1.57

PH+,in =1

PH+,out =1 (A4w)

Since we do not have any reactant in the reactions in Eq. A4o we do not need to define
reference species. Now we fill in the equation to calculate the ∆G of the reaction based
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on binding polynomials (Eq. 19 in the main text).

∆G =
∑
j

Sj∆fG
0
iref

+ RT
∑
j

Sj lnCj

−RT
∑
j

Sj lnPj([H
+])

+
∑

i∈protons
si∆fG

0
H+,i

+ RT
∑

i∈protons
si ln[H+]i

+
∑

i∈transported
si∆fG

0
i + RT

∑
i∈transported

si lnCj,i

−RT
∑

i∈transported
si ln

Pj([H
+])

[H+]i∏
k≤i Kk

+ F∆ϕm

∑
i∈inside

sizi

=0

+ 0

− 0

+ 0

+
(
s1 · 0 + (s2 + s3) · −369.31 + s4 · 0 + (s5 + s6) − 369.31

)
+ RT

(
s1 ln 10−5 + (s2 + s3) ln 10 × 10−3 + s4 ln 10−7 + (s5 + s6) ln 1 × 10−3

)
−RT

(
s1 ln

1
1
1

+ s2 ln
1.57
1
1

+ s3 ln
1.57(
10−5·1

4.75

)
+ s4 ln

1
1
1

+ s5 ln
1.01
1
1

+ s6 ln
1.01(
10−7·1

4.75

))
+ F∆ϕm · (s4 · 1 + s5 · −1) (A4x)

The outcomes of Eq. A4x in each of the cases as described in reaction Eq. A4o (i.e. using
the stoichiometric coefficients of the matrix S defined in (A4q)) are 12.76, -16.02 and
-16.02 kJ mol−1 for cases 1, 2 and 3 respectively.
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Supplementary information for the examples in the main text

Tab. 4 shows additional values next to Tab. 1 from the main text for the example cal-
culation of Succinate transport. In Tab. 5 additional values for the example calculation
on ATP synthase is shown.

Table 4: Values as used in the example calculation of ATP synthase. Gibbs energies of
formation are in kJ mol−1. Please note that the transformed Gibbs energies of
formation (∆fG

′0
i and ∆fG

′0
j ) are specific for the indicated pH.

Species ∆fG
0
i z NH ∆fG

0
i (I) ∆fG

′0
i

Succ2−in -690.44 -2 4 -693.23 -542.03

Succ2−out -690.44 -2 4 -693.23 -576.28
Succ−in -722.62 -1 5 -723.32 -534.32
Succ−out -722.62 -1 5 -723.32 -577.13
Succ0in -746.64 0 6 -746.64 -519.84
Succ0out -746.64 0 6 -746.64 -571.22
H+

in 0.00 1 1 -0.697 37.10
H+

out 0.00 1 1 -0.697 28.54

Reactant ∆fG
′0
j Pj Other

Succin -542.15 1.04 Iin 0.15 M
Succout -578.59 2.54 Iout 0.15 M
H+

in 37.10 1 pHin 6.5
H+

out 28.54 1 pHout 5
ϕm -180 mV
R 8.314×10−3 kJ K−1 mol−1

T 298.15 K
F 96.49 kC mol−1
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Table 5: Values as used in the example calculation of ATP synthase. Gibbs energies of
formation are in kJ mol−1. Please note that the transformed Gibbs energies of
formation (∆fG

′0
i and ∆fG

′0
j ) are specific for the indicated pH.

Species ∆fG
0
i z NH ∆fG

0
i (I) ∆fG

′0
i

ADP3− -1906.13 -3 12 -1912.40 -1424.56
ADP2− -1947.10 -2 13 -1949.89 -1421.40
ADP− -1971.98 -1 14 -1972.68 -1403.53
ATP4− -2768.10 -4 12 -2779.25 -2291.41
ATP3− -2811.48 -3 13 -2817.75 -2289.26
ATP2− -2838.18 -2 14 -2840.97 -2271.82
Pi2− -1096.10 -2 1 -1098.89 -1058.23
Pi− -1137.30 -1 2 -1138.00 -1056.69
H2O

0 -237.19 0 2 -237.19 -155.88
H+

in 0.00 1 1 -0.697 39.96
H+

out 0.00 1 1 -0.697 37.10

Reactant ∆fG
′0
j Pj Other

ADP -1425.17 1.28 Iin 0.15 M
ATP -2292.28 1.42 Iout 0.15 M
Pi -1059.30 1.54 pHin 7
H2O -155.88 1 pHout 6.5
H+

in 39.96 1 ϕm 40 mV
H+

out 37.10 1 R 8.314×10−3 kJ K−1 mol−1

T 298.15 K
F 96.49 kC mol−1

Data sources for formation energies and binding polynomials

To calculate the ∆G of a biochemical reaction using the binding polynomials requires
input data on the binding polynomials, Pj (which we can calculate from dissociation
constants, Kk, of all the species), and the standard Gibbs energy of formation ∆fG

0

for the reference species under defined state conditions (temperature, pressure, ionic
strength). Using Alberty’s Legendre transform formalism we require standard Gibbs
energies of formation for all the species of each reactant.

To obtain these values we can refer to databases such as the database developed by
Alberty (1). This database contains the standard Gibbs energies of formation for species
(∆fG

0
i ), and dissociation constants (Kk) needed to calculate the binding polynomials

(Pj). The Gibbs energies of formation in this database are derived from experimentally
determined equilibrium constants that were obtained from various literature sources.
Because Alberty’s database contains a limited amount of information, efforts to expand
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and make this information more complete are being taken (2) and, in fact, ultimately
more experiments need to be done.

However, the amount of experimentally determined data is not sufficient for analysis of
complete genome-scale metabolic networks. To achieve a more complete analysis of such
networks, thermodynamic information can be estimated using the group contribution
method (3). Using this method the standard Gibbs energy of formation at zero ionic
strength, ∆fG

0
i , of the most predominant species at pH 7 may be calculated. The es-

timated Gibb energies of formation are used with Eq. 1 from the main text to perform
thermodynamic analyses of genome-scale metabolic networks. The possibility to do ther-
modynamic analyses on the genome-scale with estimated formation energies, however,
comes at the price of reduced accuracy. In case a more detailed analysis should be per-
formed with these values, i.e. using the formulations that we proposed in Eq. 6 and Eq. 7
from the main text, then we must calculate the ∆fG

0
i values for all the species we want

to consider of each reactant using dissociation constants of all the species (1).

Correction of Gibbs energies of formation for ionic strength

Under either of the two equivalent concepts outlined above, the value of ∆fG
0
i (or

∆fG
0
iref

) depends on ionic strength in the solution. To account for ionic screening, we
can apply the extended Debye-Hückel equation (cf. 4):

∆fG
0
i (I) = ∆fG

0
i (I = 0) −RT

Az2i I
1/2

1 + BI1/2
, (A4y)

where ∆fG
0
i (I = 0) is the standard Gibbs energy of formation at ionic strength of 0, zi is

the charge of species i, B is 1.6 M−1/2 and A is a parameter that varies with temperature
approximately according to (5):

A = 1.10708 − (1.54508 × 10−3)T + (5.95584 × 10−6)T 2. (A4z)

The dependence of cation binding dissociation constants on ionic strength may also
be accounted for using the extended Debye-Hückel equation (2). Additionally, the de-
pendence of reaction Gibbs energies and dissociation constants on temperature may be
accounted for when and if the corresponding enhalpies are known.
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