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Appendix 
In this appendix, we present a simple proof of the statement that, for a uniform rigid 

body, the effective diffusion constant Deff(Q) at infinite Q is twice that at zero Q, i.e.,  
Deff(Q→∞) = 2 Deff(Q=0).  This result is independent of the shape or size of the body.  (We 
explicitly point out however that the body must have a uniform scattering length density, thus it 
cannot be partially deuterated).  This section also provides an elementary example of the 
algebraic manipulations needed to perform calculations utilized in the text. 
 

We take the rigid body as consisting of a collection of N identical subunits (which can be 
atoms, dummy atoms, domains, etc).  The case of a continuous solid can be reached by an 
appropriate limit of large N if desired. First, we note that for a rigid body, the rotational and 
translational mobility tensors are simply 3x3 matrices, identical for each subunit.  This must be 
so, since otherwise a force applied to a given subunit would result in different resultant velocities 
for other subunits, and the body would not remain rigid.  Thus we see that the mobility tensor 

defines and characterizes internal motion for a body.  We also make the simple observation 
that exp(iQr)  is one for all values of the vector r at zero Q, and that, as Q increases without 
bound, this quantity is one when r is zero and equals zero otherwise.  The remainder of our 
analysis begins with the Akcasu-Gurol (AG) formula Eq. (2).  We shall adopt the convention 
that the indices that identify a given subunit will be labeled with Latin subscripts (m,n,…) while 
spatial indices (x,y,z) will be indicated with Greek symbols (α, β, γ, …), and are typically 
omitted for clarity, with vector quantities indicated by bold script.  We note that at Q=0, the 
contribution to Deff(Q) from translational diffusion is  DT

eff(Q=0) = kBT (Σmn H
T mn)/N

2, while at 
infinite Q this contribution becomes DT

eff(Q→∞) = kBT (Σnn HT nn)/N = kBT  Tr(HT)/N.  We 
point out for later use that for a rigid body, DT

eff(Q=0) =  DT
eff(Q→∞) since HT is independent of 

n.   By contrast, DR
eff(Q), the contribution to Deff(Q) from rotational diffusion, is zero at Q=0, 

since Σn rn = 0 by definition of our coordinate system.  Of course, Deff(Q) = DT
eff(Q)+ DR

eff(Q).  
The calculation of the contribution of rotational diffusion at large Q is slightly more involved, 
and will now be considered in detail. 
 

The contributions to rotational diffusion are normally evaluated using the usual methods 
for systems involving rigid constraints, such as Lagrange multipliers or generalized coordinates 
(see Doi and Edwards (42), sec 3.8).  The following course is simpler and suffices here.  The 
angular velocity vector of the rigid object is given by ω = HR τ, with the torque τ =  Σn rn x Fn.   
The vector force Fn on subunit n is given in terms of the velocity vn and overall angular velocity 
ω by Eq. (3) .   Thus for an arbitrary 3-component vector ω 
 
                      ω = HR

 Σmn rm x (N2HT)-1
mn  (ω x rn )                                                                  (A.1)                                   

 

We note that Eq. (A.1) is of the form ω = Mω for an arbitrary vector ω, implying that M is the 
identity matrix.  It immediately follows that the 3x3 matrix HR  can be evaluated by an inversion 
of a 3x3 matrix calculated by summing over subunit coordinates n.  The rotational mobility 

tensor is thus determined by the translational mobility tensor.  In the simplified case (adopted in 
this work) where the x, y, and z principal components of the translational mobility tensor HT are 
all set equal to a friction constant 1/ζ  (see discussion surrounding eq. 3), a compact formula 
arises in terms of a 3x3 matrix inverse, arising from the protein diffusion constant D0 (measured 
by NMR) and the N structural coordinates of the protein (defined so that Σn rn = 0):  



 

 

                           H
R
αβ    =N (D0/kBT)   [Σn (δαβ r

2
n – rrα rnβ ) ] 

-1
                                         (A.2) 

 

 To complete the proof that Deff(Q→∞) = 2 Deff(Q=0), we now use the fact that ω is arbitrary,  
set ω = HT Q  in equation (A.1), contract the remaining vector index on the left hand side with 
Q, and perform an average <  … > over the orientation of Q: 
 

      DT
eff(Q→∞) =  kBT Σ n <Q HT 

Q >/(NQ2 )  

                           =  kBT Σ n < (Q x rn)
  HR  

 (Q x rn)
  >/(NQ2 )   

                           = DR
eff(Q→∞) 

                                                                                                       (A.3)  

from which we see that  at large Q the translational and rotational contributions to the AG 
formula are identical, so Deff(Q=0) = DT

eff(Q=0) = DT
eff(Q→∞) = DR

eff(Q→∞).  Since Deff(Q) = 
DT

eff(Q)+ DR
eff(Q) this completes the proof. 

We will also demonstrate that in general for a flexible system one only has the bound  
Deff(Q→∞) ≥ Deff(Q=0).  We consider a system with no rigid constraints, so there is only one 
mobility tensor H.  We also omit spatial indices in the interests of clarity. 

Note that the second law of thermodynamics assures us that the power dissipated by a system is 
generally non-negative (Doi and Edwards (1), Eq.3.18),  therefore 

Σn vn Fn = Σmn Fm  Hmn Fn  ≥ 0                                                                   (A.4) 

for any set of applied forces F, and therefore the mobility tensor is positive semidefinite (has no 
negative eigenvalues).  If we choose F to have only two nonzero components, Fm= 1 and Fn = -1, 
we see that (A.4) implies that H is dominated by its diagonal elements: 

Hmm + Hnn ≥ Hmn + Hnm                                                                           (A.5) 

We now sum over all indices m and n, and note that (A.5) implies 

     Deff(Q→∞)  =   kBT Tr (H)/N  ≥   kBT Σmn Hmn /N
2  = Deff(Q=0)       (A.6) 

The inequality approaches the equality Deff(Q→∞) =  Deff(Q=0)  when all elements of H are 
equal (the delicate singular limit of  a stiff but still  flexible body, discussed in (2)).  In the other 
extreme limit, when the mobility tensor is entirely diagonal (the limit of non-interacting subunits 
in a flexible system) we have  

Deff(Q→∞)  =   N Deff(Q=0)     (A.7) 

  



  For a system with an infinite number N of subunits,  Deff(Q→∞) thus increases without bound 
in the case of a diagonal mobility tensor (cf. the Rouse model of polymers).  Thus we see that the 
uniform rigid body result Deff(Q→∞) = 2 Deff(Q=0) is quite unusual. 
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 Concentration (mg/ml) D0 (Å

2/ns) 
NHERF1 11.9 2.4±0.3 

NHERF1·hFERM 6.5 2.1±0.3 
NHERF1·dFERM 3.4 2.0±0.3 
 

Table SI.  Translational diffusion constants D0 obtained from pulsed field gradient NMR. 

 
  
 
 
 

 

 



Supporting Figures 

 

Figure S1.  (A)  I(Q,t)/I(Q,0) vs. t plot for NHERF1·hFERM and (B) I(Q,t)/I(Q,0) vs. t plot for 
NHERF1·dFERM obtained from NSE experiements.  The lines in the plots are single exponential 
fit to the NSE data 
 
 
Figure S2. (A) Size-exclusion chromatograph of NHERF1·FERM complex, NHERF1, and 
FERM.  (B) SDS PAGE analysis of NHERF1·dFERM (lane 2) and NHERF1·hFERM (lane 3).  
The electrophoresis experiments were performed on samples used for NSE experiments after the 
neutron scattering experiments.   
 
 
Figure S3.  For the hydrogenated NHERF1·

h
FERM complex, the difference in Deff(Q) 

between the rigid-body model and domain-motion models is very small, but is significantly 
increased  in the deuterated complex.  (A) Comparing the rigid-body calculation with the 
domain-motion calculation in the four-point model in the hydrogenated NHERF1·hFERM 
complex.  NSE data from the NHERF1·hFERM (blue open squares), the four-point rigid-body 
model (black line), four-point model incorporating domain motion between PDZ1 and PDZ2  
(red line),  four point model incorporating domain motion between PDZ1 and PDZ2 and finite 
size form factor of 20 Å radius for the FERM domain, PDZ1 and PDZ2 (blue line).  D0 at Q=0 
Å-1 as measured from PFG NMR is shown in blue solid square. (B) Comparing the rigid-body 
calculation with the domain-motion calculation in the four-point model in the deuterated 
NHERF1·dFERM complex.  NSE data from the NHERF1·dFERM (red open squares), the four-
point rigid-body model (black line), four-point model incorporating domain motion between 
PDZ1 and PDZ2  (red line),  four point model incorporating domain motion between PDZ1 and 
PDZ2 and finite size form factor of 20 Å radius for the FERM domain, PDZ1 and PDZ2 (blue 
line).  D0 at Q=0 Å-1 as measured from PFG NMR is shown in red solid square. 
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