## Supporting Information for "Functional and Structural Models for the Nickel-Iron Hydrogenase"

## by Bryan E. Barton and Thomas B. Rauchfuss

## Contents:

- p.2 Illustrative calculation of acid-independent rate constant for [2H]<sup>+</sup>.
- p.3 Figure SI-1. Variable temperature <sup>31</sup>P{<sup>1</sup>H} NMR spectra of **1**.
- p.4 Figure SI-2. Variable temperature  ${}^{31}P{}^{1}H{}$  NMR spectra of **3**.
- p.5 Figure SI-3. Deconvolution of IR spectrum of [4H]<sup>+</sup>.
- p.6 Figure SI-4. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $[3H]^+$  at + 19 and -60 °C.
- p.7 Figure SI-5. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $[1H]^+$  at +19 °C.
- p.8 Figure SI-6. Kinetics for H/D exchange of  $[3H]BF_4$  with D<sub>2</sub>O.
- p.9 Figure SI-7. Rate of deprotonation of [3H]BF<sub>4</sub> by NEt<sub>3</sub>.
- p.10 Figure SI-8. Current response for [4H]BF<sub>4</sub> vs. [CF<sub>3</sub>CO<sub>2</sub>H].
- p.11 Figure SI-9. <sup>31</sup>P{<sup>1</sup>H} and high-filed <sup>1</sup>H NMR spectra of  $B(C_6F_5)_3$  with **1** and then addition of  $H_2$ .

For the case of hydrogen-evolution catalysis by [2H]<sup>+</sup>:<sup>1</sup>

$$\frac{i_{\rm c}}{i_{\rm p}} = \frac{\rm n}{0.4463} \sqrt{\frac{\rm RTk}{\rm Fv}}$$

where n = total number of electrons transfered (2) R = gas constant (8.31 J mol<sup>-1</sup> K<sup>-1</sup>)

T = temperature (K) F = Faraday's constant (9.64853E4 C) v = scan rate (V/s)

 $k = rate constant (s^{-1})$ 

For 
$$i_c/i_p = 16$$
 collected at 0.1 V/s, 298 K  
 $16 = (4.4813) * \operatorname{sqrt}(RTK/Fv)$   
 $(3.57)^2 = RTK/Fv$   
 $(12.75)^*(96485.3^*0.1) = (8.31)(298)k$   
 $49.67 \text{ s}^{-1} = k$ 



**Figure SI-1.** Variable temperature <sup>31</sup>P{<sup>1</sup>H} (161 MHz, CD<sub>2</sub>Cl<sub>2</sub>) NMR spectrum of **1**. Top: 0 °C; middle: -30°C; bottom -68 °C. At the lowest temperature, most of the sample has precipitated from solution at low temperature, verified by ejecting the NMR sample tube. The signal at  $\delta$ 48 arises from an impurity of Ni(dppe)<sub>2</sub>.



**Figure SI-2.** <sup>31</sup>P{<sup>1</sup>H} NMR (161 MHz,  $CD_2CI_2$ ) spectrum of **3**. Signals at  $\delta$  77 and 45 are assigned to the Ni(dppe) center. The signal at  $\delta$  55 is assigned to the Fe(PPh<sub>3</sub>)(CO)<sub>2</sub> center. Signals at  $\delta$  57 and  $\delta$  44 are assigned to impurities of Ni(pdt)(dppe) and Ni(dppe)<sub>2</sub>, respectively. A room temperature spectrum of a cleaner sample of **3** is presented in the main text.



**Figure SI-3**. Bottom: Observed FT-IR spectrum for  $[4H]^+$  in THF solution (black), and simulated as containing 15%  $[4H_2]^{2+}$  (red), 70%  $[4H]^+$  (orange), 15% 4 (green). Simulation parameters for 4 were taken from a fit of 4 in THF (not shown), whereas the spectra for  $[4H]^+$  and  $[4H_2]^{2+}$  were recorded on acetone and CH<sub>2</sub>Cl<sub>2</sub> solutions, respectively.

Top: Observed FT-IR for  $[4H]BF_4$  in THF solution (black), and the summation for the simulation (red).



**Figure SI-4.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (CD<sub>2</sub>Cl<sub>2</sub>, -60 °C) of [**3**H]BF<sub>4</sub> showing three inequivalent <sup>13</sup>C signals for the pdt ligand, two signals for PPh<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>PPh<sub>2</sub>, and two signals for Fe(CO)<sub>2</sub>(PPh<sub>3</sub>), each appearing with discernable <sup>2</sup>J<sub>PC</sub>. Insets show expanded regions of interest and include corresponding <sup>13</sup>C{<sup>1</sup>H} NMR spectra at +19 °C, showing that the dppe backbone signals coalesce before the SCH<sub>2</sub>N



**Figure SI-5.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (CD<sub>2</sub>Cl<sub>2</sub>, +19 °C) of [**1**H]BF<sub>4</sub> showing two pdt signals (26, 36 ppm), one PPh<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>PPh<sub>2</sub> signal (t, 30 ppm, <sup>1</sup>J<sub>PC</sub>~<sup>2</sup>J<sub>PC</sub>), and two Fe(CO)<sub>3</sub> signals (204, 205 ppm).



**Figure SI-4.** Pseudo-first-order H/D exchange kinetics of [**3**H]BF<sub>4</sub> in the presence of excess D<sub>2</sub>O in d<sup>6</sup>-acetone solution. Concentration of [**3**H]BF<sub>4</sub> was calculated by integration of the hydride signal ( $\delta$  –3.08) against a normalized phenyl signal. Under these conditions (see Experimental),  $k = 5.5 \times 10^{-4} \text{ s}^{-1}$  ( $t_{1/2} = 21 \text{ min}$ ).



**Figure SI-5.** Pseudo-first-order decay plot for the reaction of [**3**H]BF<sub>4</sub> with NEt<sub>3</sub> as monitored by <sup>31</sup>P{<sup>1</sup>H} NMR spectroscopy. Under these conditions (see Experimental),  $k \sim 4.5 \times 10^{-4} \text{ s}^{-1}$ ,  $t_{1/2}$  = 28 min).



**Figure SI-7.** Dependence of catalytic current for a 0.389 M solution of  $CF_3CO_2H$  vs. concentration of [4H]BF<sub>4</sub>.



**Figure SI-8.** Top: <sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz) of **1** ( $\delta$  64) with B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> showing a ~16% conversion to the hydride [**1**H]<sup>+</sup> ( $\delta$  71) presumably from the reaction of B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> and water from the CD<sub>2</sub>Cl<sub>2</sub> ampule. Bottom: <sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz) of the same NMR tube with H<sub>2</sub> added. Insets: high-field <sup>1</sup>H NMR spectra (500 MHz) showing bridging hydride signal.

(1) Fraze, K.; Wilson, A. D.; Appel, A. M.; Rakowski DuBois, M.; DuBois, D. L. *Organometallics* **2007**, *26*, 3918-3924.