Neural-specific α3-fucosylation of N-linked glycans in the *Drosophila* embryo requires Fucosyltransferase A and influences developmental signaling associated with Oglycosylation

Dubravko Rendić^{*}, Mary Sharrow^{*}, Toshihiko Katoh, Bryan Overcarsh, Khoi Nguyen, Joseph Kapurch, Kazuhiro Aoki, Iain B. H. Wilson and Michael Tiemeyer

FIGURE LEGENDS FOR SUPPLEMENTARY DATA

Figure S1. Transcripts for FucTB and FucTD are not detected in the embryo. Wild-type embryos (Oregon R) were probed with single-stranded, digoxigenin-labeled RNA probes specific for FucTB (**A-D**) or FucTD transcripts (**E-H**) as described for **Figure 2**. Specific hybridisation patterns were not detected for either probe. All embryos are oriented with their anterior ends to the left.

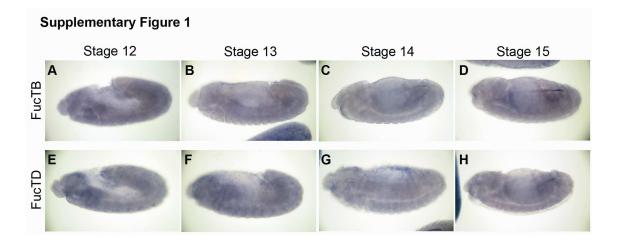
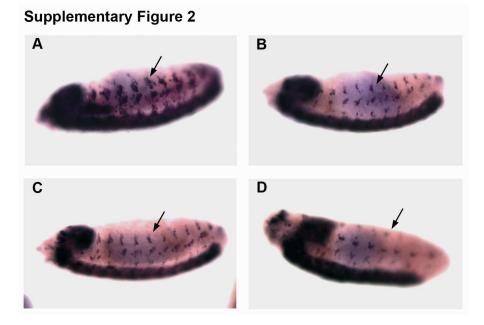



Figure S2. *elav*-GAL4; UAS-FucTA but not -FucTB, -FucTC, or -FucTD embryos exhibit a neurogenic phenotype. Expression of the four candidate α3-fucosyltransferases, each driven by ELAV, was assessed by in situ hybridization with enzyme-specific probes. (A) FucTA transcripts, detected by FucTA-specific probe, revealed enlarged peripheral neural clusters (arrow). These sensory clusters are barely detectable in the wild-type embryo (see Figure 2G-H) and are significantly smaller in *elav*-GAL4; UAS-FucTB (B), *elav*-GAL4; UAS-FucTC (C), or *elav*-GAL4; UAS-FucTD (D) embryos hybridised with their respective gene-specific probes.

