
Online Appendix: Simulation Details 

Simulation: We simulated a dataset of 10,000 consecutive probes on a single 

chromosome. Let S be the indicator for copy number at a probe with S=0 indicating baseline 

copy number. In the region covered by these probes, we modeled 10 copy-number variable loci 

(CNV) covering 10 probes each. Each CNV was assigned with equal probability to be a 

duplication (S=1) or a deletion (S=-1). We assumed that for each CNV, 10% of the sample 

carried minor allele (S=+/- 1).We then generated a sample of 100 individuals, randomly 

assigning copy number state for each CNV to each individual. We then sampled probe 

intensities for every probe from a N(μS, σ) distribution with mean ߤௌ ൌ  Here δ represents a .ߪߜܵ

effect size parameter; large values of δ indicate an experimental system where copy number 

variable probes are more easily discernable.  

Analysis: We applied two methods to analyze each dataset. First, we performed a standard 

Hidden Markov Model (Fridlyand J, 2004). We modeled the data with three hidden states and 

assumed that the intensity distribution for each state was known. We performed a Baum-Welch 

forward-backward algorithm (Baum LE, 1970) with 30 iterations to estimate the transition matrix. 

We observed convergence of the transition matrix after 5 iterations. Based on the estimated 

transition matrix we then applied a Viterbi-algorithm (Viterbi, 1967) to estimate CNV-status for 

each probe. Computation time of this analysis was approximately 1 min on a 2.33 GHz 

processor. 

Second, we applied CopyMap, setting the minimum length of each CNV to 5 and assigning 

a prior probability p=0.005 to both non-baseline statuses. Copymap uses a modified Baum-

Welch algorithm; we performed 30 iterations to estimate the locus-specific transition rate, 

observing convergence of the overall likelihood after 10 iterations. To maintain comparability 

with the first method, we used a Viterbi-algorithm to estimate CNV status of each probe using 

the site-specific transition rates. Computation time of this analysis was approximately 8.5 min on 

a 2.33 GHz processor. 

To evaluate the performance of each algorithm, we defined each consecutive set of probes 

inferred to be in the same non-baseline copy number state as one CNV. We compared the 

location and copy number state of each inferred CNV with the location and copy number state of 

each simulated CNV. Inferred CNVs that overlapped with at least one CNV of the same copy 



number state in the same individual were considered correct calls, otherwise inferred CNVs 

were considered false calls. We calculated the precision of correct calls at estimating the 

boundary of a CNV the following way: Assume probes are numbered 1,...,10000 and let FT and 

LT be the first and the last probe covering the simulated CNV. Moreover let FI and LI be the first 

and the last probe covering the inferred CNV. The boundary error is then calculated by ܤ ൌ

்ܨ| െ |ூܨ ൅ ்ܮ| െ   .|ூܮ

For each value ߜ א ሼ0.5, 0.75, 1, 1.125, 1.25,1.375, 1.5,1.75, 2, 2.25, 2.5ሽ we repeated this 

analysis 50 times. Figure 1A summarizes the average number of correct calls and false calls; 

Figure 1B summarized the average boundary error of the correct calls.  
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