Supplementary Information for

 Tunable Quantum Beam Splitters for Coherent Manipulation of a Solid-State Tripartite Qubit System
Guozhu Sun^{1,2,3*}, Xueda Wen³, Bo Mao², Jian Chen¹, Yang Yu^{3*}, Peiheng Wu¹, Siyuan Han^{2*}
¹Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
²Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
³National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
^{*}To whom correspondence should be addressed. E-mail: gzsun@nju.edu.cn; yuyang@nju.edu.cn; han@ku.edu.

Supplementary Figures (Fig. S1, Fig. S2 and Fig. S3)

Supplementary Figures

Fig. S1 Dynamics in the region free of qubit-TLS coupling. a, Energy decay from the excited state to the ground state. $T_1 \simeq 70$ ns. b, Rabi oscillation. $T_R \simeq 80$ ns. c, Ramsey fringes with different microwave power. Curves are shifted vertically for clarity. d, Ramsey fringes period *vs* detuning frequency. $T_2^* \simeq 60$ ns. e, Spin-echo signal. $T_2 \simeq 137$ ns. The symbols are the experimental data and the solid lines are theoretical fittings.

Fig. S2 Schematic of generating LZS interference with tunable beam splitters in a phase qubit coupled to two TLSs. $|a\rangle$, $|b\rangle$ and $|c\rangle$ are the instantaneous eigenstates of the time-dependent Hamiltonian (14).

Fig. S3 LZS interference in qubit-TLS system. a, Numerically simulated LZS interference pattern in the qubit-first TLS system. b, Numerically simulated LZS interference pattern in the qubit- second TLS system.