Bishydrazide Glycoconjugates for Lectin Recognition and Capture of Bacterial Pathogens

Avijit Kumar Adak, Alexei P. Leonov, Ning Ding, Jyothi Thundimadathil, Sumith

Kularatne, Philip S. Low, and Alexander Wei

Supporting Information

1.	Figure S1	S 1
2.	Figure S2	S2
3.	Figure S3	S2
4.	Figure S4	S2
5.	Figure S5	S3
6.	Figure S6	S3
7.	NMR spectra of hexa(ethylene glycol)-linked diester	S4
8.	NMR spectra of hexa(ethylene glycol)-linked bishydrazide (4)	S5
9.	NMR spectra of heptanediol-linked diester	S6
10.	NMR spectra of heptanediol-linked bishydrazide (5)	S7
11.	NMR spectra of lactose–bishydrazide conjugate (6)	S 8
12.	NMR spectra of pulmonary trisaccharide–bishydrazide conjugate (7)	S9
13.	NMR spectra of heptanediol-linked lactose–bishydrazide conjugate (9)	S10
14.	NMR spectra of pulmonary trisaccharide intermediate (12)	S11
15.	NMR spectra of pulmonary trisaccharide intermediate (13)	S12
16.	NMR spectra of $(\beta$ -GalNAc $(1\rightarrow 4)\beta$ -Gal $(1\rightarrow 4)\beta$ -Glc $)$ (2)	S13

Figure S1: Representative data from flow immunocytometry demonstrating peanut lectin binding to microspheres conjugated with lactose–bishydrazide 6 (cf. Figure 3). Positive binding determined by degree of peak overlap between immunolabeled beads and negative control.

Figure S2: Capture of *Pseudomonas* on BSA-coated substrates with photopatterned glycan–bishydrazide–ANB conjugate, imaged by darkfield microscopy. Bacterial capture at 10^6 cfu/mL, using pulmonary trisaccharide conjugate **16**.

Figure S3: Control study showing no *Pseudomonas* capture by substrates patterned with lactose–bishydrazide conjugate. Darkfield images of patterned region of interest (ROI), (a) before and (b) after exposure to *Pseudomonas* for 1 hour at 10^6 cfu/mL.

Figure S4: Control study showing no capture of UV-irradiated *Pseudomonas* (2 hours, $\lambda_{max} = 254$ nm) by substrate patterned with pulmonary trisaccharide–BSA conjugate (7–BSA). Darkfield images of patterned ROI, (a) before and (b) after exposure to UV-irradiated *Pseudomonas* (10⁶ cfu/mL).

Figure S5: Control study showing capture of *Pseudomonas* by substrate patterned with 7–BSA, in the presence of excess lactose (a–c) or GalNAc (d–f). (a) 100 mM lactose; (b) 50 mM lactose; (c) 1 mM lactose; (d) 100 mM GalNAc; (e) 50 mM GalNAc; (f) 1 mM GalNAc.

Figure S6: Fluorescence microscopy images of the immunocomplexes exposed to different concentration of ME. Top: (a-e) images exposed to 100 μ M ME for 2-24 h. Bottom: (f-k) images exposed to 10 μ M ME for 2-48h. Square regions (256x256 pixels) in each image were analyzed (by Adobe Photoshop) for changes in luminosities.

Hexa(ethylene glycol)-linked bis-ethyl(carboxymethyl)ester

Hexa(ethylene glycol)-linked bishydrazide (4)

Heptanediol-linked bis-ethyl(carboxymethyl)ester

Heptanediol-linked bishydrazide (7)

¹³C NMR (100 MHz, CDCl₃)

 $H_2 N_{N_1} \overset{O}{\underset{H}{\longrightarrow}} O_{-} () \overset{O}{\underset{5}{\longrightarrow}} O_{-} N H_2$

Lactose–bishydrazide conjugate (6)

Pulmonary trisaccharide–bishydrazide conjugate (7)

Heptanediol-linked lactose–bishydrazide conjugate (9)

Pulmonary trisaccharide (β -GalNAc(1 \rightarrow 4) β -Gal(1 \rightarrow 4) β -Glc), trichloroacetamide (12)

Pulmonary trisaccharide (β -GalNAc(1 \rightarrow 4) β -Gal(1 \rightarrow 4) β -Glc), protected derivative (13)

Pulmonary trisaccharide (β -GalNAc(1 \rightarrow 4) β -Gal(1 \rightarrow 4) β -Glc) (2)

