NSMB-A24877B

Supplementary Data contains four figures and two tables

Binding-induced folding of prokaryotic ubiquitin-like protein on the *Mycobacterium* proteasomal ATPase targets substrates for degradation

Tao Wang¹, K. Heran Darwin², Huilin Li^{1,3}

¹Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000
²New York University School of Medicine, Department of Microbiology, New York, NY 10016
³Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794

Correspondence and requests for materials should be addressed to H.L. (<u>hli@bnl.gov</u>) or K.H.D (<u>heran.darwin@med.nyu.edu</u>).

Supplementary Fig. 1 Comparison of Mpa with archaeal proteasome ATPases. (a) Sequence alignment of Mpa. Note the conserved Asn70, Pro97, and Pro98 in Mpa. (b) Comparison of the crystal structure of Mpa with the archaeal proteasomal ATPase PAN. The structures of Mpa1-234, *Archaeoglobus fulgidus* PAN- Δ CC_CC_{GCN4} hybrid (PDB ID 2WG5), and the *Methanocaldococcus jannaschii* PAN (PDB ID 3H43) are aligned and displayed individually (b) and superimposed (c). The similar position and orientation of the coiled-coils may indicate they are relatively rigid.

Supplementary Fig. 2. Pup21-64 interacts with Mpa coiled coil. (a) Full-length Pup-His₆ retained Mpa1-96 and Mpa 46-96, but not Mpa1-46, on the Ni-NTA resin, indicating that Mpa1-46 is not involved in recognizing Pup. (b) Pup21-64 bound to Mpa peptides (Mpa1-46, Mpa46-96, Mpa1-96) essentially as well as to full-length Pup, indicating that the Pup1-21 is not involved in binding the coiled-coil region of Mpa. Samples in (a) and (b) were separated by SDS-PAGE and stained with Coomassie brilliant blue. Pup migrates in SDS-PAGE gels with an apparent molecular mass of ~14 kDa, most likely due to the relatively small number of hydrophobic residues that reduces binding to SDS.

Supplementary Fig. 3. Crystal structure cartoons of Mpa46-96 from the side (a) and top (b) views. In the crystal, the Mpa46-96 helix formed a non-physiological anti-parallel, four-helix coiled-coil bundle. Thus the formation of the parallel two-helix bundle in the presence of Pup would require disruption of this *in vitro*, non-native four-helix bundle.

Supplementary Fig. 4. The 2Fo-Fc electron density map of Pup:Mpa1-234 complex. (a) Top view along the three-fold axis of the Mpa hexamer. Only the three coiled-coils of Mpa and Pup are shown. The hexameric OB fold region was omitted for clarity. The cartoon view of Mpa coiled-coil structure is superimposed in green, and the Pup helix in red. The electron density is shown at 1σ level. (b) Zoomed side view at one coiled-coil region showing the electron density at 1σ (Left), 3σ (middle), and 6σ (right) threshold levels, respectively. At the 3σ display level, the Pup helix density almost disappeared, while the Mpa coiled-coil density remained robust.

For recombinant protein production				
Protein (residues)	Plasmid/Host	Genotype/Characterization		
Mpa1-234	pET24b(+)/ER2566	Kan ^r , NdeI/NotI, C terminal His ₆ -tag with thrombin site		
Mpa23-234	pET24b(+)/ER2566	Kan ^r , NdeI/NotI, C terminal His ₆ -tag with thrombin site		
Mpa46-234	pET15b/BL21(DE3)	Amp ^r , NdeI/BamHI, N-terminal His ₆ -tag with thrombin site		
Mpa1-46	pET15b/BL21(DE3)	Amp ^r , NdeI/BamHI, N-terminal His ₆ -tag with thrombin site		
Mpa46-96	pET15b/BL21(DE3)	Amp ^r , NdeI/BamHI, N-terminal His ₆ -tag with thrombin site		
Mpa1-96	pET15b/BL21(DE3)	Amp ^r , NdeI/BamHI, N-terminal His ₆ -tag with thrombin site		
Mpa20-96	pET15b/BL21(DE3)	Amp ^r , NdeI/BamHI, N-terminal His ₆ -tag with thrombin site		
Mpa98-609	pET24b(+)/ER2566	Kan ^r , NdeI/NotI, C terminal His ₆ -tag with thrombin site		
Mpa97-245	pET24b(+)/ER2566	Kan ^r , NdeI/NotI, C terminal His ₆ -tag with thrombin site		
Mpa1-609	pET24b(+)/ER2566	Kan ^r , NdeI/NotI, C terminal His ₆ -tag, non-cleavable		
Mpa1-609	pET24b(+)/ER2566	Kan ^r , NdeI/NotI, wild type, native protein		
Pup1-64-GGE	pET15b/BL21(DE3)	Amp ^r , NdeI/BamHI, N-terminal His ₆ -tag with thrombin site		
Pup1-64-GGQ	pET15b/BL21(DE3)	Amp ^r , NdeI/BamHI, N-terminal His ₆ -tag with thrombin site		
Pup21-64-GGE	pET15b/BL21(DE3)	Amp ^r , NdeI/BamHI, N-terminal His ₆ -tag with thrombin site		
Pup21-64-GGQ	pET15b/BL21(DE3)	Amp ^r , NdeI/BamHI, N-terminal His ₆ -tag with thrombin site		
ın-tag Pup1-64-GGQ C-tag	pET24b(+)/ER2566	Kan ^r , NdeI/NotI, C terminal His ₆ -tag, non-cleavable		

Supplementary Table 1. Plasmids and strains used in this study

Primers for site-directed mutagenesis of *pup-zur-his*₆

R28AR29A	F : gggccaggagGCtGCcgaaaagctgac
	R: gtcagcttttcgGCaGCctcctggccc
L39SL40S	F: gaccgacgatAGTAGcgacgaaatcga
	R: tcgatttcgtcgCTACTatcgtcggtc
V46SL47S	F: aatcgacgac <u>AGcAGc</u> gaggagaacg
	R: cgttctcctcgCTgCTgtcgtcgatt

Crystal	Crystallization mother liquor	Cryo- Protectant	Sample preparation
Mpa1-234	30% v/v Tacsimate (1.8305 M Malonic acid, 0.25 M Ammonium citrate tribasic, 0.12 M Succinic acid, 0.3 M DL-Malic acid, 0.4 M Sodium acetate trihydrate, 0.5 M Sodium formate, 0.16 M Ammonium tartrate dibasic). pH 7.0, 21 °C	30% w/v sucrose, 5% v/v glycerol in mother liquor	~15 mg ml ⁻¹ Mpa1-234 in buffer: 5 mM HEPES [pH 7.5], 50 mM NaCl, 4mM MgCl ₂ , 2 mM β -ME 2 μ l sample with 2 μ l mother liquor
Mpa1-234:Pup1-64	30% v/v Tacsimate (1.8305 M Malonic acid, 0.25 M Ammonium citrate tribasic, 0.12 M Succinic acid, 0.3 M DL-Malic acid, 0.4 M Sodium acetate trihydrate, 0.5 M Sodium formate, 0.16 M Ammonium tartrate dibasic), pH 7.0, 21 °C	30% w/v sucrose, 5% v/v glycerol in mother liquor	Mpa1-234 saturated with overloaded Pup1-64-GGE. ~20 mg ml ⁻¹ in buffer: 5 mM HEPES [pH 7.5], 50 mM NaCl, 4mM MgCl ₂ , 2 mM β -ME 2 μ l sample with 2 μ l mother liquor
Mpa46-96	0.1 M sodium citrate, 2.1 M ammonium sulfate, 240 mM sodium/potasssium tartrate, 250 mM sodium chloride, pH 5.5, 21 °C	40% w/v sucrose in mother liquor	~24 mg ml ⁻¹ Mpa46-96 in buffer: 5 mM HEPES [pH 7.5], 250 mM NaCl, 4 mM MgCl ₂ , 2 mM β -ME 2 μ l sample with 2 μ l mother liquor
Mpa46-96:Pup21-64	0.1M sodium acetate 16% v/v 1,4-dioxane, 250mM sodium chloride, 2mM magnesium chloride with 1X protease inhibitor cocktail (Roche), pH 4.5, 21 °C	20% v/v glycerol in mother liquor	Mpa46-96 saturated with overloaded Pup21-64-GGE. ~13 mg ml ⁻¹ in buffer: 5 mM HEPES [pH 7.5], 400 mM NaCl, 4 mM MgCl ₂ , 2 mM β -ME, 2X protease inhibitor cocktail (Roche) 2 μ l sample with 2 μ l mother liquor

Supplementary Table 2. Crystallization conditions