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In the the paper and supplementary materials, we use the following acronyms.

LCA: latent class analysis

LCR: latent class regression

MLC model: multilevel latent class model

MLC-V1 model: MLC model with unidimensional normal random effects (Vermunt, 2003)

MLC-V2 model: MLC model with multidimensional normal random effects (Vermunt, 2003)

MLC-VN model: MLC model with “nonparametric” random effects (Vermunt, 2003)

MLC-D model: MLC model with Dirichlet random effects

LC-S model: standard latent class model that ignores clustering

ML-D: maximum likelihood using the MLC-D model

MPL-D: maximum pairwise likelihood using the MLC-D model

ML-S: maximum likelihood using the simple latent class model

ML-V1: maximum likelihood using the MLC-V1 model

A. Insights of various MLC models

As described in the paper, various multilevel latent class (MLC) models make the same

assumptions on the measurement part (β parameters), and they differ primarily in the mixing

part. The cluster specific class mixing probabilities u˜i = (ui1, ..., uiM) are treated as random

effects, whose distributions are specified differently by various models. Note that the domain

of u˜i, Ωu = {(u1, · · · , uM) : u1 + · · · + uM = 1 and 0 6 um 6 1 for m = 1, · · · ,M}, is an

(M − 1) dimensional subspace of [0, 1]M .

A.1 Marginal class prevalences (MCPs) and intra-cluster correlations (ICCs)

We introduce two quantities for MLC models that are often of scientific interest and are

conveniently interpretable, marginal class prevalences and intra-cluster correlations. We

define marginal prevalance of class m as πm = E(ηij = m), which reflects the average

prevalence of class m over the whole population. Note that

πm = E(ηij = m) = E{E(ηij = m|ui) } = E(uim). (1)

To describe within cluster dependence, we define intra-cluster correlations as follows. Let

ρmm = Cor{ I(ηij = m), I(ηik = m) } (“same-class ICC”) denote the correlation that

two subjects from the same cluster belong to the same class m, and ρmq = Cor{ I(ηij =

m), I(ηik = q) } (for m 6= q; “different-class ICC”) denote the correlation that two subjects

from the same cluster belong to different classes m and q, respectively. The former is often

of more scientific interest, and can be interpreted as “heritability” in family studies. One

can show that the ICCs are fully determined by the first and second order moments of the
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random effects ui’s. More precisely, the following

ρmq = cor{ I(ηij = m), I(ηik = q) }

=
cov{ I(ηij = m), I(ηik = q) }√

var{ I(ηij = m) } var{ I(ηik = q) }

=
cov{uim, uiq }√

var{ I(ηij = m) } var{ I(ηik = q) }

=
E(uimuiq)− E(uim)E(uiq)√

E(uim)E(uiq){1− E(uim)}{1− E(uiq)}
(2)

holds for m = q and m 6= q.

One might also use odds ratios to measure within cluster dependency, since I(ηij = m)

and I(ηik = q) are both binary random variables. The odds ratios are also fully determined

by the first and second order moments of the random effects ui’s. We will not give the full

formulas here.

A.2 Vermunt’s models

Vermunt (2003, 2008) considered a few multilevel latent class models. These models assume

the existence of higher level random effects vi’s, which could be unidimensional continuous,

multi-dimensional continuous or discrete random variables, and build relationships between

u˜i and vi’s.

A.2.1 MLC-V1. The “MLC-V1” model assumes that the higher level random effects vi’s

come from a one-dimensional normal distribution and that logistic transformed u˜i’s depend

on vi’s through a factor-analysis type structure, i.e. log
uim
ui1

= γm + λmvi , m = 2, · · · ,M,

vi ∼ N(0, σ2),
(3)

where γm, λm and σ2 are unknown parameters. For identifiability, let λ2 = 1. We also denote

γ1 = 0, λ1 = 0 for m = 1 for convenience of notations in the following. The assumption that

the (M −1) generalized logits of u˜i’s depend only on one-dimensional normal random effects

makes computation convenient, but could be restrictive in practice.

The MLC-V1 model does not yield closed-form formulas for the MCPs and ICCs. Instead,

one need to obtain these quantities by numerical integrations or Monte Carlo simulations.

For example, the first and second moments of u˜i are given as

E(uim) =

∫
R

exp(γm + λmvi)∑
m exp(γm + λmvi)

φ(vi) dvi,
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E(uimuiq) =

∫
R

exp(γm + λmvi + γq + λqvi)∑
m exp(γm + λmvi)

φ(vi) dvi,

and one can further calculate the MCPs and ICCs using formulas (1) and (2).

In this model, the variance parameter σ2 controls the level of heterogeneity among clusters.

When σ2 = 0, u˜i = (π1, π2, · · · , πM) is constant for all subjects and the model reduces to

a standard LC model without clustering. When σ2 is large, u˜i’s are quite different among

clusters, which means large heterogeneity and high ICCs. Figure 1 illustrates implications of

varying σ2 on the distribution of u˜i’s and on ICCs.

[Figure 1 about here.]

In terms of estimation, Vermunt (2003) proposed to use EM algorithm with numerical

integration over random effects. The unidimensionality of the random effects makes com-

putation feasible. However, it also imposes strong assumptions on the distribution of u˜i.
With the constraint ui1 + · · ·+ uiM = 1, the domain of u˜i is intrinsically (M-1)-dimensional

subspace of [0, 1]M . However, for fixed parameters γm and λm’s, model (3) only allow u˜i to

take values from a one-dimensional subspace (see e.g., Figure 1). This could be restrictive.

A.2.2 MLC-V2. To allow more flexibility, Vermunt (2003) also introduced the “MLC-V2”

model (4) with (M − 1)-dimensional random effects, i.e.,
log

uim
uiM

= γm + vim , m = 2, · · · ,M − 1,

v˜i = (vi2, · · · , vi(M−1)) ∼MVN(0,Σ),
(4)

where γm’s and Σ are unknown parameters.

Under the MLC-V2 model, the MCPs and ICCs do not have closed form formulas, and

numerical integration over (M−1) dimensional random effects are needed to calculate them.

For example, the first and second moments of u˜i are given as

E(uim) =

∫
RM−1

exp(γm + vim)∑
m exp(γm + vim)

φM−1(vi; 0,Σ) dv˜i,
E(uimuiq) =

∫
RM−1

exp(γm + vim + γq + viq)∑
m exp(γm + vim)

φM−1(vi; 0,Σ) dv˜i,
and one can further calculate the MCPs and ICCs using formulas (1) and (2).

For fixed parameters, this model allows more flexible distribution for u˜i. In fact u˜i is

allowed to take any value in Ωu. However, the computational burden of (M −1) dimensional

numerical integration in model estimation circumvent this approach from wide use, especially
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for moderate to large M . Thus, it was briefly introduced but not pursued in details by

Vermunt (2003).

Similarly, the covariance matrix Σ determines the level of between cluster heterogeneity

and ICCs. When Σ = 0, the MLC-V2 model reduces to a standard latent class model that

ignores clustering.

A.2.3 MLC-VN.  [u˜i | vi = s ] = (ψs1, · · · , ψsM) , s = 1, · · · , S

vi ∼ Discrete(τ1, · · · , τS)
(5)

This model was termed “nonparametric” multilevel latent class model by Vermunt (2003,

2008). Essentially, it assumes the random effects u˜i has follows a discrete distribution with

a finite number of support points ΩV N = {(ψs1, · · · , ψsM) : s = 1, 2, · · · , S}. Intuitively, this

model assumes that there are S different types of clusters and that each cluster belongs to

type s with probability τs.

Under the MLC-VN model, the MCPs and ICCs can be obtained by first calculating the

first two moments of uim’s according to

E(uim) =
S∑
s=1

ψsmτs , E(uimuiq) =
S∑
s=1

ψsmψsqτs,

and then applying formulas (1) and (2).

The MLC-VN model was considered a more flexible “non-parametric” or “semi-parametric”

approach. This argument holds if the number of support points S is large so that the discrete

distribution can approximate the underlying distribution of u˜i well. Since u˜i intrinsically

(M − 1) dimensional, S needs to be a large number (say 5M−1 with 5 grid points per

dimension) for a good approximation. On the other hand, a large or even moderate S would

lead to a large number of parameters that might cause problems for model identification

and estimation. Thus, in previous literature, S was often chosen to be a small number,

say between 2 and 5. Since the domain of u˜i is an (M-1)-dimensional space, a discrete

distribution with so few support points may not be flexible enough. In addition, two levels of

latent class structure make model interpretation, identifiability, selection and checking really

complicated. These issues were not well understood from existing literature.

Finally, if one assumes S = 1, the MLC-VN reduced to a standard latent class model that

ignores clustering.
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A.3 MLC-D

In this paper, we considered MLC models with Dirichlet distributed random effects, i.e.,

u˜i ∼ Dirichlet(α1, α2, · · · , αM), (6)

where αm’s are unknown parameters.

The MLC-D model assumes that the cluster specific random effects u˜i’s follow a Dirichlet

distribution. This is more natural compared to Vermunt’s models because of the following

reasons. First, its domain is exactly Ωu, instead of a restricted subset of Ωu, for any fixed

parameter values. Second, the Dirichlet distributional assumption works directly on the

probability scale and does not require any higher level random effects structure. Third, the

parameters αm’s and their transformations have meaningful interpretations. For example, as

revealed below, the MCPs and ICCs have simple analytic forms for convenient interpreta-

tions.

Proposition 3. The following results hold under MLC-D model for m, q ∈ {1, 2, · · · ,M}
and m 6= q,

(1) E(uim) = αm
α0

, var(uim) =
αm(α0 − αm)
α2

0(α0 + 1)
, cov(uim, uiq) = − αmαq

α2
0(α0 + 1)

;

(2) πm = Pr(ηij = m) = αm
α0

, var{I(ηij = m)} =
αm(α0 − αm)

α2
0

;

(3) ρmm = cor{I(ηij = m), I(ηik = m)} = 1
α0 + 1,

ρmq = cor{I(ηij = m), I(ηik = q)} = − 1
α0 + 1 ·

√
αmαq

(α0 − αm)(α0 − αq)
;

(4) OR{I(ηij = m), I(ηik = m)} = 1 + α0 + 1
αm(α0 − αm)

,

OR{I(ηij = m), I(ηik = q)} = 1− 1 + α0

(α0 − αm + 1)(α0 − αq + 1)
;

(5) Pr(ηij = m, ηik = m) =
αm(αm + 1)
α0(α0 + 1)

, Pr(ηij = m, ηik = q) =
αmαq

α0(α0 + 1)
.

Under the MLC-D model, marginal prevalences of classes are π˜ = (α1/α0, α2/α0, ..., αM/α0),

where α0 =
∑M

m=1 αm. The scale parameter, α0, controls the level of heterogeneity, similar

to the role of 1/σ2 for the MLC-V1 model. When α0 is large or approaches ∞, the Dirichlet

distribution approaches a discrete distribution with probability masses π˜. Under such situa-

tions, cluster specific random effects u˜i are nearly constant among all clusters and thus ICCs

are close to 0, indicating little heterogeneity. On the other hand, when α0 is small, there is

large variation of u˜i’s among all clusters. Thus, the same-class ICCs are high, reflecting large

between cluster heterogeneity. This point is demonstrated by Figure 2.

[Figure 2 about here.]
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Finally, in the limiting case with αm/α0 → πm and α0 → ∞ for all m ∈ {1, · · · ,M}, the

MLC-D model reduces to a standard latent class model without clustering.

A.4 LC-S

u˜i = (π1, π2, · · · , πM) (7)

The LC-S model is the standard LC model that ignores clustering. This model assumes

that the class mixing probabilities are constant, instead of varying among clusters. We note

that LC-S corresponds to a degenerate special case for each of the MLC models described

above.

Based on this model, the marginal class prevalences (MCPs) are exactly the parameters

(π1, π2, · · · , πM), while the same-class and different-class intra-cluster correlations (ICCs) are

all implicitly assumed to 0. As described in the paper, when the true model has clustering,

maximum likelihood estimates for β parameters based on this LC-S are still consistent, but

their standard errors need to be corrected by the robust estimators.

To summarize, various MLC models make different assumptions on the distribution of

random effects u˜i’s, and thus have different implications on the domain of u˜i, model inter-

pretation, computational burden, etc. Due to reasons described above, the MLC-D model

seems more natural and have advantages in interpretability.

A.5 Grade of membership models vs. latent class models

The Dirichlet distribution has been used in mixture type models. For example, Potthoff

et al. (2000) considered a type of grade of membership (GoM) model, which assumes that

each subject can be partial members of all classes and that partial membership weights

are Dirichlet distributed random effects. Erosheva (2003) discussed Bayesian inference for

GoM models, employing the conjugacy between the Dirichlet and multinomial distributions.

Varki and Chintagunta (2004)’s model is a mixture of LCA and Dirichlet based GoM. In the

following, we briefly explain differences between these models and our MLC-D model.

Potthoff et al. (2000) and Varki and Chintagunta (2004) are applicable to a sample of

independent subjects, assume that each subject belongs partially to all M classes, and use

Dirichlet distributed random effects to reflect heterogeneity of partial membership weights.

Potthoff et al. (2000) considered a grade of membership (GoM) model, which is applicable to

a sample of independent subjects and assumes that each subject can be partial members of

all classes and that such mixing probabilities are Dirichlet distributed random effects. Varki

and Chintagunta (2004)’s model is a mixture of LCA and Dirichlet based GoM, and is also

used to a sample of independent subjects only.
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More precisely, we give the mathematical formulas for three models here. First, we compare

the GoM model and LCA in the single level case. The mathematical form for Dirichlet based

GoM model is

Pr(Y˜ i = y˜|ui˜ ) =
K∏
k=1

Pr(Yik = yk |ui˜ ) =
K∏
k=1

{∑
m

uimpkm

}yk
{

1−
∑
m

uimpkm

}1−yk

Pr(Y˜ i = y˜) =

∫
u˜i

K∏
k=1

{∑
m

uimpkm

}yk
{

1−
∑
m

uimpkm

}1−yk

dF (u˜i)
u˜i = (ui1, · · · , uiM) ∼ Dirichlet(α1, · · · , αM),

(8)

where each subject i is assumed to be partial members of M classes with random weights

u˜i = (ui1, · · · , uiM). The parameter pkm is the probability of reporting positive on item k if

a subject belongs fully to class m. Conditional on u˜i, because subject i are partial members

of all classes, its probability of reporting positive on item k is a weighted average of pkm’s

with weights given by partial memberships, i.e., Pr(Yik = 1 |ui˜ ) =
∑

m uimpkm. In contrast,

standard latent class models have formulation

Pr(Y˜ i = y˜|ηi = m) =
K∏
k=1

Pr(Yik = yk | ηi = m) =
K∏
k=1

pykkm(1− pkm)1−yk

Pr(Y˜ i = y˜) =
M∑
m=1

πm

K∏
k=1

pykkm(1− pkm)1−yk

π˜ = (π1, · · · , πM) fixed,

(9)

reflecting the assumption that each subject belongs to one and only one class and that

responses of a subject are independent conditional on its class membership. Varki and

Chintagunta (2004)’s model is a mixture of the previous two models, by assuming that

a proportion of the population follows a latent class model and that the remaining follows a

Dirichlet based GoM model, i.e.,

Pr(Y˜ i = y˜) = δ

M∑
m=1

πm ·
K∏
k=1

pykkm(1− pkm)1−yk +

(1− δ)
∫
u˜i

K∏
k=1

{∑
m

uimpkm

}yk
{

1−
∑
m

uimpkm

}1−yk

dF (u˜i) , (10)

where δ and 1− δ are mixture proportions of the two components, respectively.

In contrast, our multilevel latent class model is applicable to a sample of clustered subjects,

assume that each subject is a full member of one and only one class, and uses Dirichlet
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distributed random effects to induce within cluster dependence. Thus, our model is funda-

mentally different from Potthoff et al. (2000) and Varki and Chintagunta (2004).

B. On the EM algorithm

In this section, we provide some technical details for the EM algorithm that are briefly

mentioned in the paper.

B.1 Some Details of the EM algorithm

Proposition 4: Let z˜ = (z1, ..., zM) ∼ Dirichlet(γ1, ..., γM) and define γ0 =
∑

m γm. Then

(i) E(zm) =
γm
γ0

; (ii) E[ log(zm) ] = DΓ(γm)−DΓ(γ0), where DΓ(x) := d
dx

log{Γ(x)}.
Proposition 5: The following results hold for the EM algorithm defined in Section 3.1:

(1) [u˜i | η˜i ; β(h), α(h) ] ∼ Dirichlet(α
(h)
1 + q

(i)
1 , ..., α

(h)
M + q

(i)
M );

(2) u˜i ⊥ Y˜ i | η˜i;
(3) E[ log(uim)|Y˜ i, η˜i; β(h), α(h) ] = DΓ(α

(h)
m + q

(i)
m )−DΓ(

∑
m α

(h)
m + ni);

(4) E[uim|Y˜ i, η˜i; β(h), α(h) ] =
α(h)
m + q(i)

m∑
m α

(h)
m + ni

Proposition 4 can be proved by direct calculation using properties of the Dirichlet distri-

bution. Result 1 in Proposition 5 can be derived by Bayes’ rule and the conjugacy of the

Dirichlet distribution to the multinomial distribution. Result 2 follows from the formulation

of multilevel latent class model. Results 3 and 4 follows immediately from Proposition 4.

B.2 Details on estimating the observed Fisher information

We numerically calculate the observed Fisher information matrix following Oakes (1999):
∂ log L(θ)

∂θ
=

[
∂Q(ψ; θ)

∂ψ

]
|ψ=θ (11)

∂2 log L(θ)

∂θ ∂θ′
=

[
∂2Q(θ;ψ)

∂θ ∂θ′
+
∂2Q(θ;ψ)

∂θ ∂ψ′

]
|ψ=θ (12)

where θ = (β, α) are the parameters and ψ = (β(h), α(h)) are the current estimates. Specifi-

cally, we plug in the parameter estimates in the final EM iteration θ̂ = (β̂, α̂), i.e,

∂2 log L(θ)

∂θ ∂θ′
|θ=θ̂ =

[
∂2Q(θ;ψ)

∂θ ∂θ′
+
∂2Q(θ;ψ)

∂θ ∂ψ′

]
|θ=θ̂,ψ=θ̂ . (13)

The first term on the right hand side of the equation above is relatively easy to obtain.

After the EM algorithm converges, we can carry out one more E-step and obtain the second

derivatives of the Q function evaluated at the final iteration. It is generally hard to obtain

an analytic form for the second term. Instead, we calculate it by numerical derivatives, i.e,
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using the formula,

∂2Q(θ;ψ)

∂θ ∂ψ′
|θ=θ̂,ψ=θ̂ ≈

[
∂Q(θ;ψ)
∂θ
− ∂Q(θ;ψ+∆ψ)

∂θ

]
∆ψ

|θ=θ̂,ψ=θ̂ . (14)

In practice, we can choose ∆ψ to be a small number, such as 10−5. One can also use iterative

algorithm, i.e, choose a ∆ψ at first, then decrease until the estimated derivatives stabilize.

To summarize, the algorithm to estimate the observed Fisher information is as follows.

(1) Use the EM algorithm until it converges. Denote the parameter estimates in the last

iteration θ̂final;

(2) Perform one more EM step and obtain ∂Q(θ;θ̂final)
∂θ

|θ=θ̂final and ∂2Q(θ;θ̂final)
∂θ ∂θ′

|θ=θ̂final using

formulas in Section 3.1. The latter is the first term in equation (13);

(3) Choose a small number ∆ψ, and carry out EM-steps to obtain the first order derivatives
∂Q(θ;θ̂final+∆ψ)

∂θ
|θ=θ̂final . Use (14) to estimate the second term in equation (13);

(4) Obtain the observed Fisher information by equation (13).

B.3 Dealing with Missing Data in EM algorithm

By using the EM algorithm, we can conveniently deal with data that are missing at random

(MAR) in the sense of Little and Rubin (2002). Let Mijk be the missing indicator for Yijk,

i.e, Mijk = 1 if Yijk is missing (hence we denote Y miss
ijk ) and Mijk = 0 otherwise (hence we

denote Y obs
ijk ). If Yijk is observed, its contribution to the complete log likelihood and the Q

function are
M∑
m=1

I(ηij = m) log Pr(Y obs
ijk | ηij = m)

M∑
m=1

wijm
[
Y obs
ijk log pkm + (1− Y obs

ijk ) log(1− pkm)
]

(15)

respectively, where pkm = Pr(Yijk = 1|ηij = m) = exp(βkm)/{1+exp(βkm)}. If Yijk is missing,

its contribution to the complete log likelihood is
M∑
m=1

I(ηij = m) log Pr(Y miss
ijk | ηij = m) ,

and its contribution to the Q function is

E

[
M∑
m=1

I(ηij = m) log Pr(Y miss
ijk | ηij = m) |Yi ; β(h), α(h)

]

=
M∑
m=1

wijm

[
p

(h)
km log pkm + (1− p(h)

km) log(1− pkm)
]
, (16)
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where p
(h)
km = Pr(Yijk = 1|ηij = m; β(h)) = exp(β

(h)
km)/{1 + exp(β

(h)
km)} is the probability of a

positive response in the current iteration.

We can see that if the response Yijk is missing, the EM algorithm “imputes” it based

on current knowledge, i.e, Y miss
ijk = 1 with probability p

(h)
km and Y miss

ijk = 0 with probability

1− p(h)
km for a member of the mth class. Only the first term of the Q function changes when

the data are missing.

B.4 Selecting the number of classes

To select among models with different numbers of classes is widely considered as a challenging

problem. Even in latent class models without clustering, the likelihood ratio test comparing

an M-class model and an (M+1)-class model does not follow the typical χ2 distribution,

because under the null hypothesis, some parameters lie on the boundary of the parameter

space, or may be not identifiable. Instead, the AIC (Akaike Information Criterion, Akaike,

1974) and BIC (Bayesian Information Criterion, Schwarz, 1978) and similar statistics have

been widely used for selecting among models.

In MLC models, appropriate specification of AIC and BIC is challenged by the multilevel

structure. Thus, we recommend an alternative method for model selection that avoids such

difficulty. We described a subsampling procedure to select the number of classes for MLC-D

model. Based on marginalization,

Pr(Y˜ ij = y˜) =
M∑
m=1

Pr(ηij = m) ·
K∏
k=1

pykkm(1− pkm)1−yk

=
M∑
m=1

αm
α0

·
K∏
k=1

pykkm(1− pkm)1−yk , (17)

so that the marginal distribution of a single subject’s response vector is a simple latent class

model with the same number of classes as the MLC model. This relationship suggests a simple

method for selecting the number of classes: randomly choose one subject per cluster, and

then apply latent class analysis on the resulting independent subsample. Standard methods,

such as BIC, could then be used to choose the number of classes, say M , using the subsample.

Finally, one would fix the number of classes, M , in a subsequent multilevel latent class model.

The method just outlined may lose precision since only a subset of the data is used. Instead,

we propose to randomly draw multiple mutually independent subsamples, resulting in the

following algorithm:

(1) Draw a subsample SS = {(i, ji) : i = 1, ..., n}, where ji is a subject randomly chosen

from all subjects {1, ..., ni} in cluster i;
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(2) Fit a latent class model using sample SS and obtain the BIC (or other model selection

criterion) statistics for all candidate models with {1, ...,M∗} classes;

(3) Repeat steps 1-2 to get L such random subsamples. Record {BIC
(m)
l : l = 1, ..., L,m =

1, ...,M∗}, where BIC
(m)
l is the BIC for m-class model using the lth subsample;

(4) Choose the model with the smallest average BIC statistic, i.e, M=arg min { ¯BIC
(m)

:

m = 1, ...,M∗}, where ¯BIC
(m)

=
∑

l BIC
(m)
l /L.

Step 4 is justified under weak law regularity conditions so long as the model selection

statistic has additive form: then, the average estimates the same limiting quantity as the

original statistic.

Note that our approach is different from using the number of clusters as the sample size

in the BIC formula. The BIC with the number of clusters as the sample size is

BICnested =
n∑
i=1

ni∑
j=1

logPr(Y˜ ij; β̂, α̂) + df · log n ,

while our approach with one subsample induces formula

BICsubsample =
n∑
i=1

logPr(Y˜ iji ; β̃, α̃) + df · log n ,

where ji is a randomly selected subject from cluster i, ji ∈ {1, 2, · · · , ni}.
We then draw multiple copies of such subsamples and take averages of BICsubsample’s to

improve accuracy. Thus, essentially, we did not really propose new procedures for nested

data. Rather, we created subsamples that contain independent subjects, and utilize BIC for

standard LC models.

For standard LCA models, it is known that the BIC would consistently choose the right

model in large samples (Haughton, 1988). The proposed BIC method has the same asymp-

totic property for multilevel data as the usual BIC method. However, the subsampling creates

a different finite sample tradeoff, especially when the sample size is small to medium. It is

known that BIC may underestimate the number of classes in small samples (Yang, 2006).

Thus the method above should be used with caution. In general, model selection on the

number of classes for MLC models is a complex problem. A more comprehensive study on

this issue would be possible future research directions and is out of scope of this paper.

B.5 Estimation: Pairwise EM algorithm

In this subsection, we briefly discuss estimation via maximum pairwise likelihood (Section 4

of the paper). We can view the pairwise likelihood in another way. If we think of “pseudo-

data” comprised of the pairs, and assume the pairs’ responses are mutually independent, then

the pairwise likelihood is exactly the joint likelihood of the “pseudo-data.” This connection
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enables us to modify the EM algorithm in Section 3 to maximize the pairwise likelihood.

We call this algorithm Pairwise EM (PEM). Under typical regularity conditions and suitable

conditions on the missing data mechanism stated below, PEM shares similar properties with

EM, for example, the ascent property and linear rate of convergence. The essential reason is

that each pairwise likelihood component satisfies the information inequality,

Eθ0

[
log

f(Y˜ fullij , Y˜ fullik , ηij, ηik; θ)

f(Y˜ obsij , Y˜ obsik ; θ)
|Y˜ obsij , Y˜ obsik

]
6 Eθ0

[
log

f(Y˜ fullij , Y˜ fullik , ηij, ηik; θ0))

f(Y˜ obsij , Y˜ obsik ; θ0))
|Y˜ obsij , Y˜ obsik

]
,

thus does the whole pairwise likelihood by additivity of expectation. The ascent property for

PEM follows by an analogous argument to that which proves the ascent property for EM

(Dempster et al., 1977).

The PEM can handle missing data conveniently, similarly as the EM. However, it requires

stricter assumptions on the missing data mechanism to ensure consistency. One set of

conditions sufficient to ensure the information inequality is that the data be missing at

random (MAR) and that the missing distribution have no more than second-order pairwise

dependence. Equivalently, the needed assumption is that, conditional on one’s own observed

data and that of each single family member, missingness is independent of all other family

members’ observed data as well as data not observed. Under such conditions, the information

inequality holds, and thus the validity of PEM is justified.

C. Sketch of the proof for Proposition 1 and 2

Both results in Proposition 1 and 2 can be obtained by using the general composite likelihood

theory (Lindsay, 1988).

Sketch of proof for Proposition 1: (1). As pointed out by Lindsay (1988), each component

of lp(β, α) is a true log likelihood function, and the corresponding score function is unbiased

provided correct pairwise specification. Thus, the first derivative of the pairwise likelihood

is an unbiased estimating function.

(2) and (3). Since the score functions of the simple likelihood are unbiased, one can obtain

the consistency and asymptotic normality based on estimating functions theory (e.g, in

van der Vaart, 2000), when the number of clusters goes to infinity and the cluster size is

fixed.

Sketch of proof for Proposition 2: (1). Since the simple latent class model is the

marginalization of the semiparametric model, f(Y˜ ij) =
∑

m πmPr(Yijk = yk|ηij = m) is

the true marginal likelihood contributed by the jth subject of the ith cluster. Under typical

regularity conditions, its derivatives with respective to β and π are unbiased. By additivity of

expectations, this would lead to the unbiasedness of the score functions of the likelihood from
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the simple latent class model. (2) and (3) can be proved using general estimating function

theory.

In fact, the likelihood function derived from the standard LC model can also be viewed

as a special case of the composite likelihood, since each component log f(Y˜ ij; β, π) is a true

marginal likelihood. Thus, consistency and asymptotic normality follows.

D. Simulation studies under Settings II and III

In this section, we show simulation results under Settings II and III. The aim of these simula-

tion studies include: 1) evaluate finite sample performance of various MLC models/methods

under more complex settings (3 classes and 8 items, compared to Setting I with 2 classes and

5 items); 2) assess the robustness of various MLC models/methods, e.g., the performance of

MLC-D when the true model is MLC-V1 and vice versa.

The simulation settings will mimic the OCD application described in the main paper.

The following two subsections report simulation results when the true models are MLC-

D and MLC-V1, respectively. The true parameter values were taken to be the MLEs of

corresponding models using the OCD data for each setting.

In the following simulation studies, the methods ML-D, MPL-D and ML-S were imple-

mented using R codes written by the authors, while simulations via ML-V1 were implemented

with the MPlus 5.21 software with 40 quadrature points for numerical integration and default

stopping criteria.

D.1 Setting II: the true model is MLC-D

In this setting, data were generated from the following true settings: n = 200 clusters, J = 4

subjects per cluster, K = 8 items, M = 3 classes. The true model was the multilevel latent

class model (6) with true parameters values being the MLEs from the OCD application (see

Table 3 of the paper). We conducted 500 simulation runs, and in each run four methods

were used to fit the multilevel latent class model, maximum likelihood for the MLC-D model

(ML-D), maximum pairwise likelihood for the MLC-D model (MPL-D), maximum likelihood

for simple latent class model with robust standard errors (ML-S) and maximum likelihood

for the MLC-V1 model (ML-V1).

First we look at findings for estimation of the measurement models. Figures 3 and 4 display

boxplots of estimated conditional probabilities, i.e., pkm = exp(βkm)/{1 + exp(βkm)}. The

solid gray lines in each figure represent true parameter values. For all four methods, estimator

distributions centered closely around true values, exhibited relatively small dispersion, and

included few outliers. The dispersion of MPL-D was similar to that of ML-D, suggesting high
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relative efficiency of the MPL-D estimates. The dispersion of ML-S, however, was larger

than that for ML-D or MPL-D, implying loss of efficiency by ignoring the within cluster

correlation. The ML-V1, which fitted the MLC-V1 model when the data were generated

from the MLC-D model, seemed to provide unbiased estimates for pkm’s with dispersion

generally smaller than ML-S but larger than ML-D.

[Figure 3 about here.]

[Figure 4 about here.]

Turning to findings relating to the mixing distribution, the distributions of the α parameter

estimates were centered around the true values using ML-D and MPL-D, according to the

upper left panel of Figure 5. Note that the methods ML-S and ML-V1 do not contain such

parameters and cannot be compared with the former two methods in terms of α parameters.

Researchers typically will be most interested in conveniently interpreted quantities, includ-

ing the marginal class prevalences (π1, · · · , πM), and the intra-cluster correlation parameter

ρ’s. Figure 5 shows that the marginal class prevalences and the intra-cluster correlation

were well estimated by the ML-D and MPL-D, with distributions centering around the

true values and having narrow spreads. The MPL-D estimates enjoyed high finite-sample

efficiency compared to ML-D estimates. The ML-S that ignores clustering could still estimate

the MCPs π˜ consistently, although with less efficiency compared to the ML-D. However, the

ML-S assumes a working independence correlation and could not provide unbiased estimates

of within cluster ICCs. The ML-V1 method seemed to be able to estimate the MCPs well,

even though the distribution of random effects ui’s are mis-specified. In terms of ICCs,

however, such misspecification led to biased estimates and very large dispersions.

[Figure 5 about here.]

To summarize, simulation studies suggests that both ML-D and MPL-D well accomplish

estimation and inference in finite samples under correct model specification. In our simulation

settings that mimic the true OCD application, MPL-D enjoyed similar finite sample efficiency

compared to ML-D. When the model is mis-specified as either LC-S (ignores clustering)

or MLS-V1, the measurement parameters and marginal class prevalences could still be

consistently estimated with less efficiency, while estimates the ICCs would be subject to

bias and large dispersions.

D.2 Setting III: the true model is MLC-V1

The simulation setting here is similar to the previous one except that the true model was

MLC-V1 instead of MLC-D. The true parameters were also taken to be the MLEs for the
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OCD example, with λ2 = 1, λ3 = 1.704, γ2 = 1.542, γ = 0.011 and σ2 = 24.154. We

conducted 500 simulation runs, and in each run four methods were used for estimation,

ML-D, MPL-D, ML-S and ML-V1.

First we consider findings for estimation of the measurement models. Figures 6 and 7

display boxplots of estimated conditional probabilities, i.e., pkm = exp(βkm)/{1+exp(βkm)}.
The solid gray lines in each figure represent true parameter values. For all four methods,

estimator distributions centered closely around true values, exhibited relatively small dis-

persion, and included few outliers. The dispersion of ML-S, however, was generally larger,

implying loss of efficiency by ignoring the within cluster correlation.

[Figure 6 about here.]

[Figure 7 about here.]

In terms of the mixing parts, only the ML-V1 method provided estimates for parameters

γm’s, λm’s and σ2 directly. The upper left panel of Figure 8 displays boxplots for estimates

of σ2 and λ3 in logarithm scale. Although in theory the ML-V1 provide consistent estimates

in large samples under correct model specification, its finite sample performance is not very

good, at least in our simulation setting. More precisely, the estimates did not center around

the true value and there were large dispersion. This is probably due to weak empirical

identifiability of variance parameters, as is often the case in random effects models.

We also evaluate estimation of marginal class prevalences (π1, · · · , πM) and the intra-

cluster correlation parameter ρ’s and show results in Figure 8. The ML-V1, which correctly

specified the underlying random effects distribution, estimated the MCPs and ICCs well,

i.e., centering around the true values and having narrow spreads. The ML-S that ignores

clustering could estimate the MCPs π˜ consistently, although with less efficiency compared

to the ML-V1. However, the ML-S assumes a working independence correlation and could

not provide unbiased estimates of within cluster ICCs. The ML-D and MPL-D methods

seemed to estimate the MCPs well, even though the distribution of random effects ui’s are

mis-specified. In terms of ICCs, however, such mis-specification led to biased estimates.

[Figure 8 about here.]

To summarize, simulation studies suggests that ML-V1 well estimate measurement param-

eters and important features of the mixing part (MCPs and ICCs) in finite samples when

the true model is MLC-V1. However, estimation of variance component parameters (say σ2)

might not be accurate, perhaps due to weak empirical identifiability. That is, a wide range

of σ2 values induce similar within cluster dependence in finite samples.

When the model is mis-specified as either LC-S (ignores clustering) or MLC-D, the mea-
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surement parameters and marginal class prevalences could still be consistently estimated

with less efficiency, while estimates the ICCs would be subject to bias.

E. On OCD application

Section 7 of the paper showed main results for the OCD application. In this section, we

provided additional results, especially on the comparison between MLC-D and MLC-V1.

As mentioned in the paper, MLC-D and MLC-V1 provided similar estimates for the

measurement part (β parameters). We now look at the mixing part, i.e., the distribution of

random effects u˜i’s . Figure 9 showed estimated pairwise and marginal distributions of ui1,

ui2, and ui3, from MLC-D and MLC-V1 models, respectively. First, from the marginal density

functions, both models implied “U” shaped density with peaks near the boundary (0 or 1).

However, one curious feature of the MLC-V1 is that the mixing probability for class 2, ui2, is

not allowed take any values above 0.702. This is a subtle consequence of the unidimensional

factor analysis type structure for modelling dependence in MLC-V1. Second, from the

pairwise distributions, it is clear that MLC-V1 restricts (ui1, ui2, ui3) to take values only

in a one-dimensional subspace of its domain Ωu = {(u1, u2, u3) ∈ [0, 1]3 : u1 + u2 + u3 6 1}.
In contrast, the Dirichlet model allows u˜i’s to take values freely in Ωu. Thus, we think that

the MLC-D is more natural. However, we do not claim it is superior than other models. As

the reviewers pointed out, the fact that MLC-V1 does not allow clusters with high class 2

prevalence is not relevant as long as model fitting is not compromised.

[Figure 9 about here.]
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Figure 1. Distribution for class mixing random effects ui = (ui1, ui2, ui3) when the MLC-
V1 model is true. In the four scenarios, the marginal mean of ui is constant (0.4, 0.27, 0.33),
while ICCs vary from high (0.82) to low (0.04). For each scenario, the top panel displays 200
random samples of (ui1, ui2) and the bottom panel shows marginal density functions for ui’s.
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Figure 2. Distribution for class mixing random effects ui = (ui1, ui2, ui3) when the MLC-
D model is true. In the four scenarios, the marginal mean of ui is constant (0.4, 0.27, 0.33),
while ICCs vary from high (0.83) to low (0.05). For each scenario, the top panel displays 200
random samples of (ui1, ui2) and the bottom panel shows marginal density functions for ui’s.
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Figure 3. Estimates of conditional probabilities when the MCL-D model is true: items
1–4. Rows and Columns correspond to classes and items respectively. Methods 1, 2, 3 and 4
correspond to “ML-D”, “MPL-D”, ”ML-S” and “ML-V1”, respectively. The solid gray lines
represent true values.
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Figure 4. Estimates of conditional probabilities when the MLC-D model is true: items
5–8. Rows and Columns correspond to classes and items respectively. Methods 1, 2, 3 and 4
correspond to “ML-D”, “MPL-D”, ”ML-S” and “ML-V1”, respectively. The solid gray lines
represent true values.
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Figure 5. Mixing distribution model estimates when the MLC-D model is true. Methods 1,
2, 3 and 4 correspond to “ML-D”, “MPL-D”, ”ML-S” and “ML-V1”, respectively. The solid
gray lines represent true values. In the first row, the left and right panels display boxplots
of α estimates (only applicable to “ML-D” and ”MPL-D”) and marginal class prevalences
for three classes, respectively. The second row contain boxplots for ICC estimates, including
three same-class ICCs and three different-class ICCs.
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Figure 6. Estimates of conditional probabilities when the MLC-V1 model is true: items
1–4. Rows and Columns correspond to classes and items respectively. Methods 1, 2, 3 and 4
correspond to “ML-D”, “MPL-D”, ”ML-S” and “ML-V1”, respectively. The solid gray lines
represent true values.
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Figure 7. Estimates of conditional probabilities when the MLC-V1 model is true: items
5–8. Rows and Columns correspond to classes and items respectively. Methods 1, 2, 3 and 4
correspond to “ML-D”, “MPL-D”, ”ML-S” and “ML-V1”, respectively. The solid gray lines
represent true values.
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Figure 8. Mixing distribution model estimates when the MLC-V1 model is true. Methods
1, 2, 3 and 4 correspond to “ML-D”, “MPL-D”, ”ML-S” and “ML-V1”, respectively. The
solid gray lines represent true values. In the first row, the left panel displays boxplots of σ
and λ3 estimates (only applicable to “ML-V1”; note that λ1 = 0 and λ2 = 1 are not free
parameters for a 3-class model) and the right panel displays marginal class prevalences for
three classes, respectively. The second row contain boxplots for ICC estimates, including
three same-class ICCs and three different-class ICCs.
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Figure 9. OCD data: distribution of class mixing random effects ui = (ui1, ui2, ui3) from
both MLC-D and MLC-V1 models. In each row, the first three panels display 200 randomly
generated samples for pairs (ui1, ui2), (ui1, ui3) and (ui2, ui3), respectively, and the fourth
panel shows marginal probability density functions for ui1, ui2 and ui3, respectively.


