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ABSTRACT Poly(A)* RNA, isolated from a single 7-mo
fetal human aorta, was used to synthesize cDNA by the RNase
H method, and the cDNA was inserted into Agt10. Recombi-
nant phage containing elastin sequences were identified by
hybridization with cloned, exon-containing fragments of the
human elastin gene. Three clones containing inserts of 3.3, 2.7,
and 2.3 kilobases were selected for further analysis. Three
overlapping clones containing 17.8 kilobases of the human
elastin gene were also isolated from genomic libraries. Com-
plete sequence analysis of the six clones demonstrated that: (i)
the cDNA encompassed the entire translated portion of the
mRNA encoding 786 amino acids, including several unusual
hydrophilic amino acid sequences not previously identified in
porcine tropoelastin, (i) exons encoding either hydrophobic or
crosslinking domains in the protein alternated in the gene, and
(iii) a great abundance of Alu repetitive sequences occurred
throughout the introns. The data also indicated substantial
alternative splicing of the mRNA. These results suggest the
potential for significant variation in the precise molecular
structure of the elastic fiber in the human population.

The elastic properties of many vertebrate tissues including
the lung and larger arteries are due to the presence in the
extracellular matrix of elastic fibers composed primarily of
the protein elastin. The individual polypeptide chains in the
elastin fibers are covalently connected by crosslinkages
derived from the oxidation of lysine residues by a Cu-
requiring enzyme, peptidyl-lysine oxidase (1-4). The exten-
sive crosslinking results in great insolubility, and substantial
determination of elastin primary structure occurred only after
the isolation of a soluble polypeptide, designated tropoelastin
(M, =72,000), from Cu-deficient or lathyritic animals (5, 6).
Although many of the tryptic peptides derived from tropo-
elastin have been sequenced, they have not been ordered (7,
8). Cell-free translation of elastin mRNA has demonstrated
that tropoelastin is the primary translation product (9-12).
Sequence analysis of a 1.3-kilobase (kb) ovine elastin
cDNA clone, of the corresponding untranslated region of an
ovine genomic clone, and of bovine genomic clones have
demonstrated the following; (i) functionally distinct cross-
linking and hydrophobic domains of elastin appear to be
encoded by separate exons, (ii) the carboxyl terminus of
these elastins ends with a cysteine-containing sequence,
Gly-Gly-Ala-Cys-Leu-Gly-Lys-Ser-Cys-Gly-Arg-Lys-Arg-
Lys, not previously observed in the protein sequencing of
tropoelastin, and (iii) there is a 1.0- to 1.2-kb untranslated
segment at the 3’ message end (13-15). Recent analyses of 6.2
kb of the 3’ portion of the human elastin gene have confirmed
these observations but also have suggested that the human
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gene lacks two exons found in the bovine gene (16). RNA
hybridization analyses have demonstrated that chick, ovine,
human, and bovine elastin mRNAs contain =3500 nucleo-
tides (13, 16-18). Thus, these mRN As should contain =2.4 kb
of translated sequence encoding 800 amino acids.

We report the construction and sequence analysis$ of
human elastin cDNA clones and correlation of the sequence
with 17.8 kb of the human elastin gene.

MATERIALS AND METHODS

Identification and Characterization of cDNA and Genomic
Clones. The isolation and partial characterization of the
human elastin genomic clones, HEL1 and HEL?2, have been
described (16). A third genomic clone was identified by
screening a library in A EMBL3 with a nonrepetitive restric-
tion fragment near the 5’ end of clone HEL2. The three
overlapping clones encompass 17.8 kb of the gene (Fig. 1).

Poly(A)* RNA was isolated from a single aorta of a 7-mo
human fetus (19), and used to synthesize cDNA by the RNase
H method (20). The cDNA was inserted into Agtl0 (Vector
Cloning Systems, San Diego, CA) with linkers, and desired
recombinant phage was identified by screening with two
probes: (i) pcHEL1, a cDNA containing 421 base pairs (bp)
of untranslated sequence (21) and (ii) a 250-bp genomic
fragment containing exon 18. Twenty-six clones were iden-
tified, and three clones that hybridized to both probes were
purified for detailed study.

DNA Sequencing and Synthesis of Oligonucleotides. Restric-
tion fragments of the cDNA and genomic clones were
isolated by electroelution after electrophoresis on 1% agarose
gels and were sequenced by the Sanger dideoxynucleotide
chain-termination method (22, 23) using a universal primer of
17 nucleotides (Collaborative Research, Waltham, MA) or
oligonucleotides of 17-22 bases synthesized in our laboratory
by a modification of the phosphite method (24), using a
MilliGen (Bedford, MA) programmable machine.

RESULTS

DNA Sequence Analysis of cDNA. Analysis of both strands
of the three largest cDNA clones (3.3-, 2.7- and 2.3-kb
inserts) revealed that their overlapping portions were iden-
tical except for three segments indicated in the bar diagrams
in Fig. 1 as open portions (approximate coordinates 1.4, 1.9,
and 2.22) to signify that the particular segment was missing
in the clone. The cDNA sequences up to the termination
codon have been combined into a single sequence in Fig. 2,
along with the encoded amino acid sequence. The composite
2358-bp translated sequence begins with a 21-nucleotide 5’
untranslated segment, includes a single methionine initiation
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8This sequence is being deposited in the EMBL/GenBank data base
(Bolt, Beranek, and Newman Laboratories, Cambridge, MA, and
Eur. Mol. Biol. Lab., Heidelberg) (accession no. J02948).
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nucleotides (s»). HEL1 and
HEL2 segments (stippled blocks)
were used for genomic screening.
In the cDNA clones (cHEL2,
cHEL3, and cHEL4), open spaces
designate exons subject to alter-
native splicing. The pig peptides
designated 1-17 correspond to the
pig peptide W series (8): 1, (W13);
2, (W8b); 3, (W1lb); 4, (Wllc); S,
(W10); 6, (W14b); 7, (W12); 8,
(W1la); 9, (W7); 10, (W4); 11,
(W16); 12, (W8a); 13, (W3); 14,
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codon, and extends through the entire translated region to the
termination codon. Not included in the figure is the previ-
ously published 1.2-kb 3’ untranslated region (16). An amino-
terminal signal sequence (Fig. 3) can be identified by com-
parison with signal sequences determined in ovine (12) and
chick-pretropoelastin (11) and by comparison with the amino-
terminal sequences of porcine (8) and chick tropoelastin (6).

The encoded amino acid sequence of human tropoelastin
shows good homology with the sequenced tryptic peptides of
porcine tropoelastin, which have been entirely identified and
are here ordered (Figs. 1 and 2). In addition to the sequences
homologous to the hydrophobic and crosslinking peptides,
several unusual sequences not identified in the porcine
peptides were encoded in the human cDNA. These include
the following: (i) the previously described, highly basic,
cysteine-containing carboxyl-terminal region (16), (ii) a se-
quence, Leu-Pro-Gly-Gly-Tyr-Gly-Leu-Pro-Tyr-Thr-Thr-
Gly-Lys (residues 213-225) that is part of a tyrosine-rich
region (other tyrosines are at residues 206, 228, 230, and 244),
and (iii) a very hydrophilic sequence (residues 605-644)
containing four arginines, one histidine, two aspartates, two
glutamates, eight serines, and one threonine.

Structure of the Gene. We have previously reported the
sequence of 6.2 kb of the 3'-most portion of the gene (16) in
which three exons, numbered 1, 4, and 5, were identified
(numbered so that homologous bovine and human exons have
consistent designation). As determined by the previous
genomic sequencing and confirmed by the present cDNA
sequencing, bovine exons 2 and 3 have no counterpart in the
human gene. In order to define the remaining exon:intron
structure, the human genomic sequence (sequencing strategy
diagrammed in Fig. 1) was correlated with the human cDNA
sequence and with sequences of porcine peptides. This
analysis identified 17 exons numbered 1, 4-18, and 4A. A
sequence homologous to exon 4A was not found in the ovine
cDNA nor in the porcine peptides (unpublished observations
indicate an homologous sequence in the bovine gene). Except
at the carboxyl-terminal region, exons encoding hydrophobic
domains (even-numbered) alternate with those encoding
crosslinking domains (odd-numbered) (Fig. 1). In every case,

(W6); 15, (W14); 16, (W5); and 17,

T 1
30 35 kb (W9).

exon splice junctions conform to the canonical sequence
AG-exon-GT (26).

Alternative Splicing of Elastin mRNA. It is clear from the
present analyses that the variation in sequence among the
human cDNAs is due to the variable presence of several
exons. Thus, clone cHEL4 lacks the sequences correspond-
ing to exons 4 and 13, and clones cHEL3 and cHEL4 lack the
sequence corresponding to exon 10A. All three cDNA clones
lack the sequence corresponding to exon 14. This sequence
has been included in the composite sequence because of the
extremely strong homology to the porcine peptide W-3 (8)
(Figs. 1 and 2) and because it preserves the alternation of
hydrophobic and crosslinking domains. Presumably, as more
cDNA clones are analyzed, exon 14 will be identified in
human ¢cDNA. As discussed below, we believe the most
likely explanation for the variability in cDNA sequence is
alternative splicing of the primary mRNA transcript.

In an effort to determine the basis for the alternative
splicing, we have analyzed the sequences surrounding the
splice sites (Fig. 4). Stretches of pyrimidines were found
adjacent to the AG dinucleotide, and possible branch-points,
deviating from the consensus branch-point sequence, YNY-
TRAY (27), at no more than two positions, were identified.
However, aside from exons 10 and 10A the 5’ intron borders
of which were GTGCA instead of the consensus sequence
GTRAG, and exon 14 the 3’ intron border of which was GAG
instead of YAG, there was very little in the surrounding
sequences to distinguish exons that were spliced out from
those that were not (for review, see ref. 28).

Hydrophilicity/Hydrophobicity Analysis. Graphical analy-
sis (29) of the distribution of hydrophilic and hydrophobic
segments of human tropoelastin demonstrates that segments
of potential crosslinking project as relatively hydrophilic
regions that are not uniformly distributed and occur at shorter
intervals in the first 200 and the last 150 residues of the
molecules (Fig. 5). Furthermore, 4 of the 5 potential cross-
linking sequences in the first 200 residues contain a proline or
other residues between the two lysines instead of the usual
alanines. Because the segments containing proline will differ
conformationally from those containing alanine, the types of
crosslink formed with these two segmental types may differ.
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Signal Peptide N Terminus

Human  MAGLTAAA PRPGVL L LLSILHP  SRPGGYPGAIPGG VPGGYFYPGAGLGALG
Sheep  MKXLTAAAARRPGVLF/LLLLCILFC/PSFPGGVPGAVPGG VPGGVFFXXXXLXXLG
Chick MRQ AAAPLLPGVL L LFSILPA  SQQGGVPGAIPGGGVPAGVFFPGAGYGG
Pig GGYPGAVPGG VPGGYFFPGAGLGGLG
FiG. 3. Amino acid sequence of the amino terminal region of

human pretropoelastin deduced from cDNA. The human sequence
has been aligned with sequences determined by sheep (12) and chick
(11) pretropoelastins and pig (8) and chick (6) tropoelastins. (| )
Presumptive site of signal sequence cleavage for human pretropo-
elastin.

This 200-amino acid segment of the protein ends in a
tyrosine-rich region of unknown function, but which may be
involved in the alignment of the tropoelastin molecules within
the fiber before crosslinking occurs. The two crosslinking
sequences that contain three lysine residues, KAAAKAAK
(exon 17) and KSAAKVAAK (exon 11), occur near the
center of the molecule and may have a unique role in
crosslinking the tropoelastin molecules. When exon 14 is
omitted, crosslinking exons 13 and 15 are placed adjacent to
one another so that the sequence becomes KAAKYGVGT-
PAAAAAKAAAK; the consequence of this merging of
crosslinking domains remains to be determined.

Structure of Intervening Sequences. In the human genome,
Alu repetitive sequences, which consist of two head-to-tail
130- and 160-bp monomeric units, constitute 3—-6% of the
total DNA mass (30, 31). Alu sequences have some features
of transposable elements and pseudogenes in that they are
often flanked by direct repeats and have A-rich sequences at
their 3’ ends (32). A striking feature of the introns of the
human elastin gene is that Alu sequences are found at a
frequency of about four times the expected value (Fig. 1).
Although each Alu repeat in the elastin gene contains some
features of the classical Alu sequence, all sequences do not
contain direct repeats—the monomer units are not exactly
the same size and are not found strictly in pairs of left and
right units. It is perhaps significant that whereas most repeats
are oriented in a 5'-to-3’ direction, several are in opposite
orientation, resulting in inverted repeats.

In addition to Alu repeats, rather long stretches composed
of either alternating purines (genomic coordinate 0.2 in Fig.
1) or alternating pyrimidines (coordinate 5.6) were observed.
Although the alternation is not strict, many potential loop
structures could be constructed between the two segments.
Segments of the remaining intervening sequences are of high

CONSENSUS yNyTufRy
branch point intron
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L e —+rr—++ . .
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GCCTGACCAGGTGGCATTGGCATTCCTGAGCCGTCATGTGCCTCATCTCCCCAG
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GGAGGGAATCTAARCCAGTACAGAGTGCCTCCCTGAARCTCGGTCTGTGTTCCCAG
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FiG. 5. Hydrophilicity/hydrophobicity analysis of human tropo-

elastin done by the method of Hopp and Woods (29). The hydrophilic
peaks correspond for the most part to potential crosslinking domains.
Amino acid sequences of potential crosslinks are given, and cross-
linking exons, where known, are numbered. Exons subject to
alternative splicing are indicated by brackets (—). The bar (—)
indicates position of the tyrosine-rich segment.

G+C content and could encode elastin-like sequences, which
may be found in some mature mRNA molecules.

DISCUSSION

The present studies have elucidated the primary structure of
human tropoelastin and have ordered the previously se-
quenced porcine tryptic peptides (7, 8). The deduced maxi-
mum size of the human protein, 786 amino acids, is consistent
with previous estimates of the M, of 72,000. The size of the
message is also consistent with previous estimates of 3.5 kb.
These sequence results show that, in general, the protein
consists of two types of alternating domains, one rich in
hydrophobic amino acids and the other rich in lysine resi-
dues. The hydrophobic domains are undoubtedly responsible
for the elastic properties of elastin, whereas the lysine
residues form covalent crosslinks between molecules. This
functional organization of the protein is reflected in the
portion of the gene thus far analyzed because hydrophobic
and crosslinking domains are encoded in separate exons.
An interesting and provocative feature of these results is
the observation that the mature elastin mRNA molecules, as
determined by ¢cDNA analysis, vary in sequence. It is
extremely unlikely that these differences are due to cloning

G AG GTuAG
exon S5’ intron

GT 1 TERM
GA 4A AG GTATGCCAGG
GT 4 AG GTAGGGGTGG
GT =1 CG GTGAGTXCCC
GC [S3 AG GTGAGAGTTG
GA d TG GTGRAGCARCTG
GR 8 GG GTGAGTTGART
TA 9 TG GTGAGTGCAC
GA 10 AG GTGCAGATGAR

10A GG GTGCATAGTA
cT 11 CC GTGAGTGCCT
GG 12 AG GTGAGTTTCA

1 T T T
A 2 G GTARGTCCCC FiG. 4. Intron sequences
GT 14 AG BGTGAGCTGTG flanking exons of human elastin
cc 1s c6 eTAmcTeccc gene. Possible branch-point se-
GG 16 cc srteasccTTa duences with best fit to the con-
o6 17 o oreasTecTa SEMSUS sequence, YNYTRAY

GAGTG (27), are indicated. In the figure, y

GA 18 AG GTGABCTGGG =Y, pyrimidine; N = pyrimidine
G NG GTuRAGY or purine; and u = R, purine.
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artifacts because they involve the omission of exons encoded
between canonical splice junctions. Such differences could
be due to the presence of more than one human elastin gene,
to allelic variation in a single gene, or to alternative splicing
of the primary transcript of a single gene. All available
evidence suggests that there is only one human elastin gene.
This evidence includes the identification of a single locus
(long arm of chromosome 2) by in situ hybridization (21),
Southern hybridization analysis of restriction enzyme digests
of genomic DNA (16), and the present finding of complete
sequence identity between the cDNAs except for the omitted
sequences. If more than one gene were involved, we would
expect to observe some sequence differences—at least, in
wobble positions that entail no amino acid substitutions.
Because the cDNA was constructed from mRNA isolated
from a single individual with, at most, two alleles, and
because three distinct cDNAs were observed, the most likely
explanation for the present results is alternative splicing of a
single primary transcript (28).

Two types of variable splicing were observed. In the first
type, there is complete excision of exons as seen with exons
4,13, and 14. In the second type, there is excision of a portion
of exon 10 in which a single intron 3’ splice site utilizes
alternative intron 5’ sites to generate two types of transcripts.
Similar excisions have been described previously, including
those involving the extracellular matrix protein, fibronectin
(28). The elastin gene appears unusual in that two types of
alternative splicing mechanisms are used. Obviously the
cDNAs analyzed here represent only a small fraction of the
total available elastin mRNA, and other types of analysis
such as S1 mapping must be done to determine the frequency
of such alternative splicing and whether other exons are
involved. In RNA hybridization experiments, elastin mRNA
is found as a rather diffuse band centered at 3.5 kb (13,
16-18), suggesting that multiple species may be present and
that the cDNAs are not the result of rare splicing events.

If all the mRNA molecules are translated, there will be
significant variation in the amino acid sequence and length of
the tropoelastin. This could explain the finding of at least two
forms of tropoelastin in several species (10, 12, 33). At
present we do not know whether the splicing pattern is
developmentally or tissue regulated and whether there are
functional differences between the molecules. The variable
expression of exon 10A is particularly intriguing. This do-
main, which is highly hydrophilic and atypical for elastin in
amino acid sequence, may be involved in interaction with
other matrix macromolecules.

The presence of an abundance of repetitive sequences
within the introns raises questions concerning the stability of
the elastin gene within the human population. In other human
genes, such as those for the low density lipoprotein receptor
(34) and human o hemoglobin (35), deletions apparently
mediated by recombination between repeated sequences
have occurred, resulting in hereditary diseases. In addition,
evidence for genomic instability in regions of human DNA
enriched in Alu repeat sequences has been presented by
Calabretta et al. (25). Further studies of the elastin gene are
warranted to determine whether significant polymorphism,
possibly mediated by similar mechanisms, is found in the
population. Because the conformation of elastin is, at least in
part, that of a random coil (36), the stringency for conserva-
tion of the amino acid sequence may be less than that for
other proteins with specific conformations, and elastin mol-
ecules that vary in sequence may exist and be compatible
with relatively normal life. However, genetic variation in the
structure of elastin could result in an ensemble of molecules
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varying in fitness, with potential adverse consequences on
the properties of vital cardiovascular and pulmonary tissues
over individual lifetimes.
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