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Analysis of compound purity by analytical HPLC 

 
Figure S1. Analytical reverse-phase HPLC profile of 6-methyl-9-β-D-ribofuranosylpurine(2) after 
recrystallization. Retention time = 9.5 min. Purity = 98 %. Absorbance wavelength = 254 nm. 
 
 

 
Figure S2. Analytical reverse-phase HPLC profile of 7-methyl-3-β-D-ribofuranosyl-3H-
imidazo[4,5-b]pyridine (1-deaza-6-methyl-9-β-D-ribofuranosylpurine, 4) after recrystallization. 
Retention time = 10.6 min. Purity = 98%. Absorbance wavelength = 254 nm. 
 
 

 
Figure S3. Analytical reverse-phase HPLC profile of 4-methyl-1-β-D-ribofuranosyl-1H-
imidazo[4,5-c]pyridine (3-deaza-6-methyl-9-β-D-ribofuranosylpurine, 5) after recrystallization. 
Retention time = 9.6 min. Purity = 99 %. Absorbance wavelength = 254 nm. 
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Figure S4. Analytical reverse-phase HPLC profile of4-methyl-7-β-D-ribofuranosylpyrrolo[2,3-
d]pyrimidine (7-deaza-6-methyl-9-β-D-ribofuranosylpurine, 6) after recrystallization. Retention 
time = 9.6 min. Purity = 98 %. Absorbance wavelength = 254 nm. 

 
 

 
Figure S5. Analytical reverse-phase HPLC profile of 4-methyl-7-(5'-O-methyl-β-D-
ribofuranosyl)pyrrolo[2,3-d]pyrimidine (7-deaza-6-methyl-9-(5'-O-methyl-β-D-
ribofuranosyl)purine, 7). Retention time = 11.1 min. Purity = 98 %. Absorbance wavelength = 
254 nm. 
 

 

Figure S6. Analytical reverse-phase HPLC profile of 6-methyl-9-β-D-ribofuranosylpurine 5'-
triphosphate (8). Retention time = 6.3 min. Purity = 98%. Absorbance wavelength = 254 nm. 
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Figure S7. Analytical reverse-phase HPLC profile of 4-methyl-7-β-D-ribofuranosylpyrrolo[2,3-
d]pyrimidine5'-triphosphate (7-deaza-6-methyl-9-β-D-ribofuranosylpurine 5'-triphosphate, 9). 
Retention time = 4.9 min. Purity = 95 %. Absorbance wavelength = 254 nm. 
 
 
 
Guanidine resistance assay data 
 

 
 
 
 
 
 

Table S1. Formation of guanidine-resistant plaques by 2, 6 and ribavirin (a mutagenic control) in 
a guanidine resistance assay of viral mutagenesis. 

 
 

Compound Ribavirin Ribavirin 2 2 6 6 
Conc. ( µM) 150 300 1.62 3.24 0.046 0.092 
Guar plaques 150 >250 12 22 19 17 
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NTP assay data 
 

 
 
Figure S8. Panels A-C: Pre-steady state kinetics of incorporation of 9 into RNA opposite 
template U by PV RdRP. Panel A: Image of SDS PAGE gel of extended 10-mer 32P-labeled 
RNA substrate (illustrated in Figure 3, Panel D) using 100, 200, 400 or 800 µM of 9. Fast time 
points were taken using a chemical quench-flow rapid kinetics apparatus (KinTek Corp.). Panel 
B: Fits of 11-mer product formation as a function of time to a single exponential model, yielding 
observed rate constants, kobs. Panel C: Replot of observed rate constants as a function of the 
concentration 9 and fit to a hyperbolic model yielding estimates of kpol, the maximal rate 
constant for a single incorporation, and Kd,app, the kinetically-measured binding constant of 9 to 
the PV RdRP-RNA complex. Use of the chemical quench-flow apparatus to measure 
incorporation kinetics and fits to models were essentially as described in a reported procedure 
(Biochemistry 2004, 43, 5126-5137). Note that compound 9 is fluorescent, preventing use of the 
stopped-flow apparatus to measure kinetics of incorporation, as was possible for non-
fluorescent 8 (Figure S9). 
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Figure S9. Pre-steady state kinetics of incorporation of 8 into RNA opposite template U by PV 
RdRP. Panel A: Time courses of incorporation of 8 into RNA by PV RdRP measured with a 
stopped-flow rapid kinetics apparatus (KinTek Corp.), using an RNA substrate containing the 
fluorescent reporter 2-aminopurine (Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (11), 4267-4272). 
Four concentrations of 8 were examined: 100, 200, 400 and 800 µM. The change in 
fluorescence as a function of time was fit to a single exponential model yielding observed rate 
constants, kobs. Panel B:. Replot of the observed rate constants as a function of the 
concentration of 8 and fit to a hyperbolic model yielding estimates of kpol and Kd,app. Use of the 
stopped-flow apparatus to measure incorporation kinetics was essentially as previously 
described (Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (11), 4267-4272). 
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Figure S10. Pre-steady state kinetics of incorporation of compounds 8 and 9 into RNA opposite 
template C by PV RdRP. Panel A: image of SDS PAGE gel loaded with the extended 10-mer 
32P-labeled RNA substrate (illustrated in Figure 3, Panel B) using 2 mM 8 or 9. The Mg2+ 
concentration was adjusted to maintain 4 mM free Mg2+ above the concentration of 8 or 9. A 
fifty-fold excess concentration of unlabeled RNA was added at the time of 8 or 9 addition to trap 
free PV RdRP, thus preventing multiple initiation events by the polymerase. Panel B: Time 
courses of product formation fitted to a single exponential model. kobs values were further 
analyzed and refined by simulation to a mechanism that takes into account RdRP-RNA complex 
dissociation occurring at a rate that competes with the slow rate of 8 or 9 incorporation (data not 
shown). 
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Figure S11.Steady state incorporation of 8, 9 and natural nucleotides into double-stranded RNA 
by PV RdRP. Nucleotide incorporation reactions were initiated by addition of PV RDRP. Panel A: 
no nucleotide; Panel B: ATP; Panel C: ATP, UTP; Panel D: ATP, UTP, GTP; Panel E: ATP, UTP, 
GTP, CTP; Panel F: 8, UTP, GTP, CTP; Panel G: 9, UTP, GTP, CTP. 
 
 


