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ABSTRACT The genotypic variance within, o2, and be-
tween, o7, random mating populations and rates and times for
convergence to equilibrium values from different founder pop-
ulations are formulated for an additive genetic model with an
arbitrary number of alleles k, number of loci m, population
size N, and mutation rate u, with unequal mutation rates for
alleles. As a base of reference, the additive variance o2 in an
infinite equilibrium population is used. o2 increases as k in-
creases and decreases with variation in the mutation rates.
Both transitional and equilibrium values of the variance within
populations could be expressed as o =(1 - 0)a2, where @is
the coancestry with mutations of individuals within popula-
tions. Thus, rates of convergence and evolutionary times are a
function of those for @, which involves both N and u. When the
founder population is fixed, very Iong times are required to
obtam a perceptible increase in o2 and equlhbrlum values of
o2 are very small when 4Nu < 10 !, The variance between
populatlons can be expressed as o} = 200’, when the founder
populatlon is an infinite equilibrium population, and as o7 =
2(6 - qo)a,, when the founder population is fixed, where ¢is a
function only of «. In this latter case, rates of divergence, while
affected by both N and u, are dominated by « and asymptoti-
cally a function of u only. With u = 105, very long times (10°
generations) are required for any perceptible divergence, even
for N = 1-10. At equilibrium, most of the variance is between
small populations and within very large populations. Migra-
tion increases the variance within populations and decreases
the variance between populations.

A theory for the evolution of quantitative characters when
the only driving forces are drift and mutation is important as
a basis for comparing the consequences of additional forces.
There are also practical considerations for plant and animal
breeding.

We formulate the genotypic variance within and between
populations and the rates and times for convergence within
populations and for divergence among populations from dif-
ferent founder populations, for an additive genetic model
with an arbitrary number of alleles, number of loci, popula-
tion size, and mutation rates. The effects of migration are
also considered.

The results are different from most of those in the litera-
ture, which is reviewed later and compared.

Population, Quantitative, and Mutation Models

We envision independent replicate random mating (including
selfing) monoecious diploid populations, each consisting of
N individuals in each distinct generation, all stemming from
the same founder population. Our purpose is to develop tran-
sitional and equilibrium values for genotypic components of
variance for individuals within populations o2, among popu-
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lations o, and among independent individuals ¢ = o} +
o2, for a quantlta/ tive character contributed to by genes,
which are otherwise neutral, undergoing mutation.

Only additive effects of genes within and between loci are
considered. Thus, we may treat a single locus and, except
for linkage disequilibrium, add over loci. The genotypic val-
ue for a genotype with alleles A; and A;is G;; = x; + x; where
the xs are considered to be from some distribution with mean
zero and variance o2. The genotyplc variance among indi-
viduals within populations is éG2 — ¢GG’ where & denotes
expectatlon and G and G' are for a random pair of individ-
uals in the same population. This is actually the dlfference
between the variance of unrelated individuals eG2 — (¢G)?
and the covariance of individuals in the same population,
eGG' — (¢G)*. We expand the expectation & = g.&,¢,, to
include the expectation ¢, within populations, &, over repli-
cate populations, and ¢, with respect to the xs. Let p; be the
expected frequency of allele A; in gametes at reproduction
within a population. Then, with random union of gametes as
in_our mating system eG? = g6 ,2, pibi(xi + x;)° = &8
22(13, ﬁz) x}+ 2,¢J pipjxix;]. Continuing the expectation
for the x5 G2 = ¢, (1 + 2;5)207? since the xs have mean
zero and are uncorrelated. For two random members in the
population, the expectatlon 1s eGG' = g.&p 2,2;P:P; (x; + Xx;)
S ZiBrBixe + x1) = 4&,3p 02, again making use of the lack
of correlation of the xs. The genotyplc variance within popu-
lations is then o2 = (1 — Q)202, where Q = s,,Z,p, and the
factor of 2 simply shows that the genotypic variance for dip-
loids is twice the genic variance with only additive effects of
genes.

The component of variance for differences among popula-
tions is the difference between the covariance of individuals
within populations and that of individuals in distinct popula-
tions—i.e., 07 = eGG' — £G,G,, where G; and G, are in
different replicate populations If we substitute the expected
gene frequency Di ebp, for pii in eGG', we obtam GG, =
42,p, o2 and letting g= 5 ?, 00 =20 - q)2a‘ with a total
variance of o2 = 0% + ot = (1 + Q — 29)202.

Mutation is of the form that a random gene mutates to the
ith allele with probability v; each generation, including no
change in the state of the gene. The total mutation rate for
thelocusisu = 3y, i =1,2,.. ., k, for k alleles.

Background

Before incorporating mutation into the results, it is helpful to
review the situation when the only forces operating are pop-
ulation size and mating system. Let the initial population be
an infinite random mating population with additive variance

= (1 — ¢)20? for our model since ¢ = Q initially The
components of variance over t1me for a monoecnous popula-
tion (1, 2) are o3, = (1 — 0)a3, 0} = 2007, 07 = (1 + Hog,
where 6 is the coancestry cocffument between individuals in
the same population and is the same as the inbreeding coeffi-
cient. For the rth generation of random mating in a monoe-
cious population, §, = 1 — (1 — 1/2N)’. The additive vari-
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ance within populations as a proportion of the total is o2/ o2
=(1 - 6)/(1 + 6). However, of more interest is the variance
maintained within flmte populations relative to that for an
infinite population, o2/ /04 = 1 — 6, and the relative variance
among populations, o/c% = 26. Wright (2) commented that
these relationships also hold when a steady state has been
reached with respect to mutation or migration.

Transitional and Equilibrium Results

We extend the probability 6 of two random genes being iden-
tical by descent to include that neither gene has mutated, as
did Malécot (3). For 6,,, the probability that a random pair
of genes descended from the same gene in the previous gen-
eration is 1/2N and from different genes is 1 — 1/2N, but
these are identical by descent with probability 6,. The proba-
bility that neither gene has mutated is (1 — u)*>. Consequent-
ly, 6,41 = (1 — w)?[1/2N + (1 — 1/2N)6,). At equilibrium, 6
has a value of 8, = p?/2N(1 = N);p=1—-u, A =p’y, y=1
- 1/2N,1 -6, = (1 — p»/(1 — \). Before equilibrium, 6, =
6, + (6 — 6.\, where 6, is the initial value. For values of N
and u often encountered in practice, good approximations
are , =1/(1 + 4Nu), A =1 - 2u — 1/2N =1 — 1/2N,,.
The terms g and Q, the frequencies with which genes are
alike between and within populations, respectively, were
studied in detail (4). We briefly repeat the results essential to
this study and develop the relationship between 6 and Q.
The equilibrium frequency from mutation of the ith allele
is pis = vi/u with a transitional value of p;, = p;,(1 — p') +
piop', where pjy is the initial frequency. The frequency with
Wthh genes from distinct rephcate populatlons are alike is 9
= ¥p? and at equilibrium ¢, = p2 = (1 + ¢?)/k, where c is
the coefficient of variation of the mutation rates or of the
p.s. The transitional value of g can be put into the form

a: = q.1 = ¢) + qo¢r + (q.0 — q.)2p'(1 — p"),
where q.0 = ipi.pio and ¢, = p* is the probability that a
random pair of genes from different populations have not
mutated, ¢, = 0.

We develop Q, = &,p7 in a different manner and with none
of the approximations used in ref. 4. The expected frequen-
¢y, PBi, is expressed in terms of the actual frequency, p;, of
the parents allowmg for mutatlon p,,+12 5,(1 — u) + up;,
and 0,41 = &,2ip% 41 = epeniP (1 — u)? + u? 3;p? + 2u(l —
u)ep2ipiPir. Pursuing expected values further &, E,pu PN H
+ ziﬁi{(l pu)/ZN Elﬁu (1 = 1/2N) + 1/2N since p;(1 —
Bi)/2N is the variance of p; from random sampling of 2N
genes. USlng ehpl! = Dirs 8bzlpmpn =q, t (q*o q*)P With
these substitutions, Q,,; = O\ + p*/2N + (1 — p2)gq. + 2u(1
— u)q.0 — q.,)p". At equilibrium, the rightmost term is zero
and Q, = p?/2N(1 = M) + (1 — pAq./(L — N =6, + (1 —
(7 )q,,, a feature overlooked in ref. 4. From the relatlonshlp o)

(Q — QN + 2u(l — u)(q.o — q,,)p and utilizing
E P’)\' = (' =N (p =N, ji=0,1,. — 1, the
solutlon to the difference equation is

Qr= 0.+ (Qo—~ QN + 2p(1 = p)q.o — g — N)/(p—N).

Founder Popiilations

We shall consider different initial or founder populations.
For all initial populations gy = Q,. For an initial infinite equi-
librium population, gy = Qo = ¢; = .0 = q., 8 = 0; 6, = 6,(1
-\, 0, =q,+61- )\')(1 -q.). Onl}f Qand 0change w1th
time. Consequently, o2, =1 - 0)20i=(Q1 - 6)oland o},

= 2Q, - q)202 = 26,02, where o = (1 — g,)207 is the
additive variance in an infinite equilibrium population equiv-
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alent to the initial population. Thus, the components of vari-
ance over time in this situation may be phrased in terms of
and o2.

When the initial population is fixed for one allele, the evo-
lution of g and Q is complex with unequal mutation rates (4).
We avoid this complexity by assuming that the initial popula-
tion is fixed for allele i with probability p,; and refer to this as
a random fixed population. Then as an average over these
initial fixed populations, or for equal mutation rates or for an
infinite allele model, g9 = Qo= =1,9.0=q.;9: = q. + (1
= q)¢ 0 = 9*+(1-0*)>\'~Q1—Q +(1—Q)>\'—q*+(1
- q,)0,. Consequently, the genetic variance components are
g%, = (1 - 6)o? and o}, = 2(6, — ¢,)o2. The component of
variance within populations again involves only 6 and o2,
while that between populations involvés ¢ in addition. If N
=x, 6, = ¢, O, = q, and o =1 - Gol)o'(zn o, = 0.

Nei (5) assumed an initial finite equilibrium population
with size equal to that of the replicate populations. More pre-
cisely, it is a random finite equilibrium population and ex-
pectations are taken over such initial populations. For these
do = Qo = Qr = Q.. 9u0 = 4., 6 = 6, = 6, and the only
change is in g, ¢, = q. + (Q. — q.)¢,. The component of
genetic variance within populations remains the same, o2,
and that between populations, o3, = 26,(1 — ¢,)o2, increases
in response to mutations over time to that for equilibrium
populations.

Effects of Multiple Alleles

The additive variance for a particular locus o2 = [1 — (1 +
c?)/k]20? increases as k increases to a maximum when k=
and decreases as ¢? increases if & is finite. This latter effect
can be substantial for few alleles. With mutation rates 107>,
1073, 107°, 107" for four alleles ¢> = 1.12,and 1 — g, =
0.47, which is about 63% of that with equal mutation rates
and about half of that for an infinite number of alleles. With
mutation rates 10~°, 107° for two alleles 1 — g, = 0.17.
The assumption that the effects are random with respect
to the alleles may not be too far off when viewed over loci.
Of course, o2 may vary among loci so that some loci with
fewer alleles will have greater variance than others with
more alleles. The number of alleles does not have to be very
large, k = 10, for the infinite allele model to be a good ap-
proximation.

Multiple Loci and Linkage

For m loci the total variance within populations is o3 =

S02 =31 = 6)ol, I =1, ..., m.If the mutation rate is
the same at all loci, then 6, = 0. 1f not, oy = (1 — 6) aA, 0=
3,6,02% /0% where 2,0,,, = ¢}, the total additive variance in
the infinite equnhbrlum population. Consequent]y, the total
additive variance within populations is 1 — 9 of that in the
infinite equilibrium population.

For all equilibrium populations and for transient popula-
tions from an initial infinite equilibrium populatlon the com-
ponent of variance among populations is o3 = 2 3,60%
= 265%. For transnent populatlons from a finite equnhbnum
population, o = 23, 0 (1= ool =20, - ¢) o4, where
the function 6,(1 — ¢) is a complicated weighted average.
For an mmal random fixed population o} = 2 3(6, — )’
=200 - <p)0'A

While mutations will lead to linkage disequilibrium, tem-
porarily but for some time with tight linkage within a popula-
tion, the average effect over pairs of loci or over populations
will be of little consequence as long as mutational events at
different loci are independent. It would take some unusual
mutational structure to lead to covariances.
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Variations in the Mating System

Selfing is included in the formulations by letting N = 1.
Then, o2 is the genotypic variation among individuals from
the same parent, o?is the genotypic variation among individ-
uals from different initial parents, and o} = o2 — o2. Since
drift is almost entirely a function of the effective number N,,
we may substitute N, for N to accommodate circumstances
where the effective number is larger or smaller than the cen-
sus number.

With separate sexes and no mutations, ol =0+F-
20)02, o0 = 2002, o2 = (1 + F)o2, where F is the inbreeding
coefficient. Thus, for exact results we would need to incor-
porate F into the development. However, with random mat-
ing, 6, = F,,;, and with mutations, p%6, = F,;,. Also, the
greatest difference in 6, and F, occurs in the initial genera-
tions and for full sibbing, N = 2. Even then a reasonable
approximation is obtained by letting 2N = 5 in the monoe-
cious formulations. Consequently, we may use N, = 4N,,,
Nef/(New + No) where N,,, and N, are the effective num-
bers for males and females, respectively (6, 7), and then sub-
stitute 2N, + 1 for 2N in the monoecious formulation for a
good approximation.

The frequency, g, with which genes are alike between rep-
licate populations is independent of the mating system.

Evolutionary Rates of Convergence and Divergence

The rate at which the variation within populations converges
to the equilibrium state and the rate at which populations or
lines diverge from each other are not necessarily the same,
although they can be. We treat rates for a single locus with
the understanding that an average value over loci is implied.

The rate of convergence or divergence is defined as the
fraction of the distance to equilibrium that is accomplished in
the transition from one generation to the next. The rate of
convergence for 6is (6,+; — 6)/(6, — 6) =1 — N =2u +
1/2N = 1/2N§,. The rate is a constant, 1 — A, whether from
an initial value of 1 or 0, and involves both the mutation rate
and population size.

The rate of convergence of o2 is strictly a function of the
transition rate of § when the founder population is an infinite
equilibrium population or a random fixed population. Conse-
quently, the rate is 1 — A. When the founder population is a
finite equilibrium population, there is no change in 6 and o2,
01 = 0*7 O’a'[ = szt’a'

For the divergence among populations, measured by o,
the rates depend on the founder population. For an initial
infinite equilibrium population the rate is again 1 — A, the
same as for 6. If the initial population is a finite equilibrium
population, the rate 1 — p? = 2u is the same as that for ¢. It is
also a constant but now strictly a function of the mutation
rate. Recall that population size plays no role in the transi-
tion of g or ¢, and in this case the transition of o3 is strictly a
function of the transition of g or ¢.

When the initial population is a random fixed population
the transition of a7 involves both that in 8 and ¢, and the rate
1-p? - p*1 - 6)y/2N[1 — (1 — 6,)¥'] is not constant.
Recall that y = 1 — 1/2N is a function of N. While popula-
tion size affects the rate for some time, asymptotically the
rate is 1 — p? and just a function of the mutation rate. Lynch
and Hill (8) also found the asymptotic rate to be independent
of population size for a somewhat different model. The ef-
fect of finite population size on the early rates is to make
them less than for mutation alone.

Evolutionary Time

The rate of approach to equilibrium in many cases is a con-
stant 1 — \. In these cases, the number of generations re-
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quired to progress a fraction z of the distance to equilibrium
is given by equating 1 — A = z. Foru < 10"'and N > 5, a
very good approximation is given by ¢, = 6 NK, where K, =
—2log.(1 — z) = 1.39 for z = 0.5, 6.00 for z = 0.95, and 9.21
for z = 0.99.

Since A = p?ythe relative roles of mutation and drift in the
progress to equilibrium depend on the relative values of p?
and ¥, respectively. Each has equal weight in determining A’
when p? = y—i.e., 4Nu = 1, 6, = 1/2. When N is small
relative to #~!, Nu = 1072, which with « = 10~° means that
N is 1,000 or less, then population size dominates the transi-
tion and ¢, = NK,. This is the transition time found by Rob-
ertson (9) for selection advance and by Lynch and Hill (8) for
mutational advance with N small in both cases. On the other
hand, if N is considerably larger than «™!, Nu = 10, or Nis 1
million or more for u = 1073, then the process is dominated
by the mutation rate 6,N = 1/4u, t, = K /4u, which is the
result for N infinite.

When the rate of divergence among populations is 1 — p?,
as for the initial finite equilibrium population, then also 7, =
K./4u since divergence is entirely a function of mutations.
With an initial random fixed population, the rate of diver-
gence among populations is not constant and we have the
relationship, pZ[1 + 4Nu(1l — y')] = 1 — z. For N not too
large and for the range of s of interest, t. = (K, — 2log.
6,)/4u, which is somewhat longer than with mutations alone.

Migration

We briefly check Wright’s (2) comment that F statistics
should also correctly apportion the genotypic variance with-
in and among populations at equilibrium with migration.
From what we have demonstrated, this must be the case
since mutations maintain the total equilibrium variance and
mutation, migration, and population size determine the vari-
ances within and among populations.

We consider gametic migration with rate m occurring at
the time of reproduction in an infinite island model. Let a =
1 — m. Then, 6,4, = Pz[az(l/ZN + y6) + (1 — az)‘ProO],
where the last term is for genes from different populations.
We find the relationship tf)é =80, + (6 — )N + (1 —
a?)6p¥(1 — y'a?)/(1 — ya?), where 6, = p*a’/2N(1 — \&?)
=1/(1 + 4Nu + 4Nm) for small m. If the initial population is
an infinite equilibrium population, 6, = 0, then the rate of
convergence of 6 is constant 1 — Aa? (faster than without
migration) and at all stages o2, = (1 — 6,02, 0%, = 26,02 In
any case, at equilibrium o2, = (1 — 6,)a2, 03, = 26,05. With
fixed initial populations, the rates are more complex than for
mutation alone. Of course, the effect of migration is to main-
tain more variation within populations and less between pop-

ulations.
Discussion

With unequal mutation rates and a fixed initial population,
the transitions of Q and g are gene-frequency-composition
dependent. An example is given in ref. 4, in which the allele
that is fixed has the smallest mutation rate. Values obtained
by g and Q over time are less than the equilibrium values and
finally return to the equilibrium values, although each start-
ed with a value of 1. However, for our purposes, the main
issues are clarified by considering random fixed initial popu-
lations.

It is difficult to relate many other studies to this one be-
cause of the differences involving number of alleles, domi-
nance, mutation model, population size or 4Nu, and selec-
tion. We review only those that include results for neutral
genes with additive effects.

Wright (10) found the equilibrium variance within popula-
tions for two alleles with additive effects. Let v, and v, be
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the two mutation rates with u = v; + v,. The equilibrium
gene frequencies are p;, = v,/u and p,, = vo/u. Then his
variance can be put 1nto the form (1 — 6,)0%, wherel — 6, =
4Nu/(1 + 4Nu) and o2 = 2p,.p,.a°, a being one- half the dif-
ference between the two homozygotes Thus, o2 is the vari-
ance in an infinite equilibrium population. Nei and Imaizumi
(11) also found this result in a study involving dominance and
selection.

Chakraborty and Nei (12) studied an additive genetic mod-
el similar to ours but with a stepwise mutation model. They
found the equrlrbrrum variance within populatrons to be aw.
= 2Nnmva®, where n is the number of loci, m is the maxi-
mum number of steps in the mutation model, v is the muta-
tion rate, and a is the effect of the mutation for a single step.
They assumed a binomial distribution for the number of
steps for each mutauon which has a variance of ma?/2 that
is equivalent to 202 in our model. With this interpretation,
o¥. = ndNv(20?) = n(1 — 6,)o2. The latter approximation
rests on 4Nv bemg very small and on o2 being for an infinite
number of alleles in an infinite equilibrium population. The
authors do not mention any constraints on N and v but a very
small 4Nv is implied in their derivation of o, which has a
constant rate, 1/2N, of approach to equrllbnum The vari-
ance between populations is o3, = 2nmva® [t — 2N(1 -

~2Ny] for monomorphlc initial populations when a-%yo =0,
and o}, = 2nmva’t when oy = o%., both being linear in ¢ in
time. The variance between finite populations becomes infi-
nite over time.

Lynch and Hill (8) restricted their results to 4Nu < 1 and
argued that in small populations there will be only two alleles
segregating at a locus at any particular time. They also treat-
ed dominance for two allele models but we compare only the
results for additive effects. Their equilibrium variance within
populations is o%, = 2N — 2N — 1)/2N] 2np &a@® =
n4Nuea® where n is the number of loci, u is the mutation
rate, and a is half the difference between the two homozy-
gotes. They considered only fixed initial populations and the
rate of approach to equilibrium for the additive model is a
constant 1/2N. In their model, a corresponds to half the dif-
ference between the two homozygotes so that sa®* = 202 in
our model. Consequently, o%, =n4NpQRod) =n( - 6,)0?
by restricting 4Nu to be much smaller than 4Nu < 1. Their
variance between populations, like that in ref. 12, becomes
infinite in time. They also studied separate sexes and con-
cluded that neither separate sex nor dominance appreciably
altered conclusions based on additive effects with monoecy.

These results (8, 12) are considerably different from ours.
Utilizing our interpretation, their o'%s are similar to each oth-
er and similar to ours for an infinite alleles model and very
small 4Nu—that is, 4Nu/(1 + 4Nu) = 4Nu. Also, the o}s of
refs. 8 and 12 are similar in that mutations accumulate differ-
ences among populations that are ever increasing. This is in
sharp contrast to our variance among populations, which in-
creases to a finite equilibrium value 26 aﬁ

The most pleasmg aspect of our study is that we can for-
mulate the variance o2 or o3 for an infinite equrhbrlum pop-
ulation and use this as a base of reference in expressing the
variance within and among finite populations. While we may
disagree or argue about the appropriate value for o3, it
seems reasonable to assume that it is finite. If this is accept-
ed, then a new perspective is provided on the time required
to obtain and the amount of variance that can be maintained
within and among finite populations. The generality of the
results is enhanced by having no restraints placed on N or u
or their combination.

As expected, Wright’s conjectures (2) were correct. Not
so obvious was the exact form of the F statistic. Fortunately,
Malécot’s (3) identity by descent measure with mutation can
be utilized in the same manner as without mutation for equi-
librium populations and for elaborating the transitional val-
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ues of the variance within populations. The transitional val-
ues for the variance among populations from fixed founder
populations require an additional but simple identity parame-
ter ¢.

One of the main results of interest is that for many situa-
tions the variation within finite populations relative to that in
infinite populations is (1 — 8). The transitional values of 1 —
6 for u = 1073 and different population sizes, starting with 6
= 0 and 6 = 1, are plotted against logo¢ in Fig. 1. These
provide a pictorial view of rates, times to equilibrium, and
the equilibrium values. At equilibrium, there is little varia-
tion within gopulatxons relative to an infinite population
when N = 10%, but it is about 80% for N = 10° and practically
100% for N = 10°.

While we do not address selection directly, Fig. 1 depicts
little opportunity for short-term selection within populations
evolving from a fixed base and little opportunity ever in
small populations (N = 10°).

One can also relate the heritability within populatlons, hw,
to that in an mfrmte equilibrium populatlon h, = 0%/(0] +
o%), where o is the environmental variance among individ-
uals. Then, h, = (1 — 6)oi/[1 — )0k + ot =1 - O)h /Q
—6h)=(Q1 - 0)/(h;' — 6). With h, = 0.5 and u = 107, the
heritability in an equrllbnum population is 0.037 for N = 10°
and 0.004 for N = 10°. Thus, observations on heritability
correspond very closely to those on 2.

Another main result of interest is o7 representing the dif-
ferentiation among populations. When starting from an ini-
tial infinite equilibrium population, the divergence between
populations proceeds at the same rate as the convergence
within populations and o} = 26 times the variance within an
infinite equilibrium population. The rate is very fast, particu-
larly for small populations, in contrast to an initial fixed pop-
ulation, because all of the variance is present in the initial
population, and it is just a matter of apportioning the vari-
ance within and between populations by drift while muta-
tions maintain the total variance. The curves for 6 in this
case are the reverse image, 1 — (1 — 0), of the dashed lines in
Fig. 1.

With a fixed initial population, variation arises entirely by
mutational events and divergence among populations is gov-
erned to a great extent by the mutation rate. The functron 0,
~ ¢, for u = 1073 is plotted against log,of in Fig. 2, o being
proportional to twice this value. Long times are required—
10? generations even for the smallest Ns (N = 1, 10, 100)—
for there to be any perceptible variation among populations.
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logiot
FiG. 1. Values of (1 — 6, for # = 10~° and several values of N
are plotted against log, ¢t starting with initial values of 6, = 0 (dashed

lines) and 6, = 1 (solid lines). Values of N are noted beside each
curve. The two lines converge to the equilibrium value.
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F1G.2. Values of 6, — ¢, for u = 1073 and several values of N are
plotted against log,f for 6, = 1. Values of N are noted beside each
curve. N = 1, 10, and 10? are not distinguishable.

There is little prospect of short-term advance from selecting
among even the smallest lines or populations.

At equilibrium o, is proportional to 26,. With u = 107,
20, > 1.9 for N = 10%, while 26, < 0.05 for N = 10® with
intermediate values between these two ranges. Consequent-
ly, most of the variation is between modest to small popula-
tions and most of the variation is within very large popula-
tions.

We have only superficially treated migration, the main
thrust being on the interplay of drift and the production of
new variation. Also, an infinite island model is less realistic
than a finite island or other migration models considered by
Crow and Aoki (13). The obvious effect of migration is to
oppose the effect of drift by maintaining more variation with-
in populations and less between populations than would oth-
erwise be obtained. Migration plays a significant role in
natural populations but little or no role in plant and animal
improvement except in the context of contamination or pur-
posefully crossbreeding or hybridization.

Proc. Natl. Acad. Sci. USA 84 (1987) 6209

We have not addressed dominance and epistasis. No one
seems to have treated a general multiple allele model with
dominance and mutations. Even without mutations, multiple
allele models with dominance and drift are very complex
(14), requiring several components of genetic variance and
descent measures. Dominance being an interaction of alleles
often just adds noise to the system unless there is overdomi-
nance and does not alter qualitative conclusions. This con-
clusion was reached by Lynch and Hill (8), although they
considered only two gene models for pairs of alleles. First-
order interactions of nonalleles, additive by additive epista-
sis, have implications different from dominance and the po-
tential of increasing the total variance tremendously. Yet,
relative to the total variance in an infinite equilibrium popu-
lation, the effects of mutation and drift are probably not
qualitatively different from those based on an additive model.
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