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Supplementary Material 

 

Supplementary Material and Methods 

Telomere length measurement by quantitative fluorescence in situ hybridization (Q-FISH) 

Telomere length was analyzed by quantitative FISH performed by the molecular cytogenetics 

core facility in MD Anderson Cancer Center. Quantitative fluorescence in situ hybridization (Q-

FISH) was performed with Cy-3–labeled (CCCTAA)3 PNA probe and subsequent quantitative 

analysis of digital images. Briefly, slides were observed with an Axioplan microscope (Zeiss, 

Thornwood, NY) equipped with a charged coupled device (CCD) camera. Separate images were 

captured for DAPI (4,6 diamidino-2-phenylindole) and Cy-3 and subjected to telomere 

fluorescence measurements using TFL-Telo software. Individual telomere lengths were 

quantified by the level of fluorescence intensity of each telomere spot, expressed in telomere 

fluorescence units (TFUs).  

Telomere length detection by quantitative real-time PCR 

Genomic DNA was extracted from cells using QIAmp DNA blood mini kit (Qiagen) according 

to the manufacturer’s instructions. Using quantitative real time PCR, relative telomere length 

(RTL) was calculated from the telomere repeat to single gene copy number ratio, ,using a 

modified version of the method described previously [48][49]. The single gene used was 36B4, 

encoding acidic ribosomal phosphoprotein P0. The assay was done on a high-throughput 96-well 

plate and was analyzed on a BioRad IQ5 real-time PCR detection system. Telomere and single 

gene copy amplifications were run separately, with a negative control (water) and a standard 

curve run on each plate. For each plate preparation, a master mix of SYBR Green qPCR 

SuperMix (Applied biosystems) was combined with either telomere or 36B4 primers. For each 
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20-uL reaction, 8 uL of DNA (0.4 ng/uL) was added to 10 uL of the master mix + 2 uL of 

primers. Telomere primer pairs were Tel 1 (5′-

GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT-3′), Tel 2 (5′-

TCCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA-3′), 36B4d (5′-

CCCATTCTATCATCAACGGGTACAA-3′), and 36B4u (5′-

CAGCAAGTGGGAAGGTGTAATCC-3′). The thermal cycling profile for the telomere 

amplification was 95°C for 10 min followed by 35 cycles of 95°C for 15 s and 56°C for 1 min. 

For the 36B4 amplification, the profile was 95°C for 10 min followed by 40 cycles of 95°C for 

15 s and 58°C for 1 min.  

Measurement of telomerase activity 

Telomerase activity of cultured cells was determined using the telomeric repeat amplification 

protocol (TRAP, TRAPeze telomerase detection kit; Chemicon, Billerica, MA) according to the 

manufacturer’s instructions. In brief, T cells were suspended in CHAPS lysis buffer for 30 min 

on ice. The suspension was centrifuged at 12 000 g for 20 min. After determination of protein 

concentration, the cell extracts were incubated with TRAP buffer supplemented with dNTP mix, 

TS primer, TRAP primer mix and Taq polymerase (Invitrogen) in distilled water at 30ºC for 

30min and PCR was performed at 94ºC for 30s, 50ºC for 30s and 72ºC for 90s for 34 cycles in a 

thermocycler (PTC-200, Peltier Thermal Cycler). PCR samples were run on a 12.5% (w/v) 

nondenaturing PAGE gel with 0.5 × TBE buffer for 2 h at 130 V. After electrophoresis, the gel 

was stained with SYBR® Green (Invitrogen) for 30 min and de-stained for 5 min at room 

temperature. The images were taken using a Kodak 2000R imaging system.  
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Figure S1. caAkt-transduced T cells maintained longer telomere length and increased telomerase 

activity in culture. 

Figure S2. caAkt-T cells did not proliferate autonomously in the absence of prosurvival 

cytokines. 

Figure S3. FoxP3 expression was reduced in caAkt-transduced CD4+CD25+ T regulatory cell. 

Figure S4. Suppressive function was abrogated in caAkt transduced CD4+CD25+ T regulatory 

cells.  
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