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SUPPLEMENTARY METHODS AND MATERIALS 

Functional assays used to measure stem and progenitor cells 

In the absence of reliable phenotypic markers, functional assays are used to retrospectively 

identify and quantify hematopoietic stem and progenitor cells.  In vitro, the colony forming cell 

(CFC) and long term culture-initiating cell (LTCIC) assays quantitatively measure cellular 

proliferation and differentiation, and output colony formation at 2 weeks and 7 weeks, for 

committed and primitive progenitors respectively (Eaves et al., 1992).  The ability to reconstitute 

and sustain multi-lineage hematopoiesis in vivo is the gold standard, and most clinically relevant, 

stem cell assay.  A mouse (or other animal) is given a sub-lethal dose of irradiation which 

partially ablates the bone marrow, followed by infusion of test cells.  Six or more weeks later, 

mice are sacrificed and the marrow is analyzed for donor cell content and composition via flow 

cytometry.  For human cells, the xenotransplant model using immune-deficient (NOD/SCID, 

NOD/SCID-β2m-/-, or NOD/SCID-γc
-/-) mice is referred to as the Scid-mouse repopulating cell 

(SRC) assay.  Murine cells are similarly assayed a congenic strain [the competitive repopulating 

cell assay (CRA)] (Coulombel, 2004).  While exceedingly useful in the fundamental 

understanding of adult stem cell biology, the retrospective nature of these analyses is a 

significant limitation.  

 

Gene expression levels predict cellular phenotypes and secretome profiles  

To gain confidence on our microarray data we wished to quantify the relationship between gene 

expression and corresponding protein cell activity.  We compared mean fluorescence intensities 

of the blood progenitor cell surface markers CD34, CD133, CD38, and intracellular Rhodamine 

123 dye (Rho123), measured via flow cytometry (described below), to CD34, CD133, CD38, 

and ABC-B1 transcript expression levels [the ABC transporter is responsible for Rho123 efflux 

property associated with quiescent stem cells (Uchida et al., 1996)].  As shown in Figure S1A, 

positive correlations exist between CD34, CD133, and CD38 gene-protein indices, and a 

negative correlation between ABC-B1 expression and Rho123 staining, as expected.  All four 

relationships fit well to 4-parameter logistic curves (r2 = 0.97, 0.60, 0.92, and 0.88 for CD34, 

CD133, CD38, and ABC-B1/Rho123 respectively), likely due to a detection limits and saturation 

effects at low and high gene expression levels respectively.                        
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In parallel with functional, phenotypic, and gene expression analyses of cell populations, 

condition media samples were collected and analysed for “secretome” (secreted protein) profiles 

using both RayBiotech (n = 30) and Luminex (n = 120) cytokine antibody array systems as 

described below.  The majority of secreted proteins scored Present at the transcript level were not 

detected at protein level in conditioned media.  Hence, we decided to binarize the secretome data 

(Present vs. Absent) and statistically quantify the relationship between transcript expression 

ranking and the probability of protein detection.  Z-Scores, based hypergeometric distribution 

with a quartile sampling size, show that secreted proteins are statistically under-represented at 

the lower range (< 60% for Raybiotech arrays) and over-represented at the higher-range of 

expression ranking (> 75% for Raybiotech arrays and > 45% for Luminex arrays) (Figure S1B).  

In summary, these results demonstrate that mRNA expression indices correlate with complex 

measures of proteome activity (secretion and cell surface expression), lending confidence for 

further analysis of the array data. 

 

Conditioned media proteome analysis – RaybiotechTM antibody arrays 

Conditioned media samples corresponding to each culture condition and time point used for 

microarray profiling (d4, d8-SE, d8-NSNE, d12, and additionally d16) were assayed in duplicate 

using the Raybio Human Cytokine Array C Series 2000  (Raybiotech Inc., Norcross, GA, USA) 

following the manufacturers instructions.  The arrays contain antibody spots against a set of 120 

cytokines, chemokines, proteases, and soluble receptors, functioning as a multiplex sandwich 

ELISA.  Chemiluminescence images were recorded and quantified using the ChemImager 5000 

(Alpha Innotech, San Leandro, CA).  Individual spot intensities were quantified by calculating 

the Z-scores against background (negative) spot intensities, and expressed as % control spot 

intensity for normalization.   

 

Conditioned Media Proteome analysis – LuminexTM Liquid Chips 

Conditioned media samples were also assayed in triplicate using the Biosource Human Cytokine 

30-Plex detection kit (Invitrogen).  These kits utilize Luminex microshperes (Luminex Co., 

Austin, TX, USA) as a fluid platform for multiplex sandwich ELISA.  The “microspheres” 

consist of 5 µm polystyrene beads bar-coded via unique ratios of APC: APC-Cy7 dye.  Each 

colour-coded microsphere contains primary capture antibody against an individual cytokine, 
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which in combination with secondary PE-conjugated detection antibody, was used to quantify 

the concentration proteins in a test samples (detection limit ≥ 10 pg/mL) via flow cytometry as 

described previously (Kirouac et al., 2009). 

 

Conditioned media serotonin analysis – ELISA  

To validate predictions from the pathway enrichment analysis of the GeneChip data, conditioned 

media samples were tested in triplicate for serotonin (5HT) using quantitative ELISA kits 

(ALPCO, Salem NH, USA) according to manufacturers’ instructions.     

 

Phenotypic analysis 

Analysis of cell surface expression was accomplished by suspending 5x104 cells in 100µL ice 

cold Hank’s balanced saline solution containing 2% (v/v) human UCB serum (HBSS-HS).  The 

cells were then incubated on ice for 30 minutes with saturating amounts of fluorescently labelled 

antibodies; CD34-phycoerthrin (PE) or CD34-fluorescein isothiocyanate (FITC) (Beckman 

Coulter, Fullerton, CA, USA), and/or CD133-PE (Miltenyi Biotec, Bergisch Gladbach, 

Germany), and/or CD38-FITC (Beckman Coulter), or appropriate isotype controls for 30 

minutes on ice.  Staining for Rhodamine123 (Rho123; Molecular Probes, Eugene, OR, USA) 

was performed as described in (Uchida et al., 1996).  All samples were washed in HBSS-HS and 

stored on ice prior to analysis either on a FACSCanto (BD Biosciences, San Jose, CA, USA) or 

Coulter EPICS XL (Beckman Coulter, Fullerton, CA, USA) flow cytometer.            

 

Description of microarray datasets 

The microarray datasets used to extract the 55 cell type-characteristic gene sets (Table S1) 

correspond to a meta-analysis of human Embryonic Stem Cell (HESC) expression profiles 

(Assou et al., 2007), freshly isolated quiescent vs. cycling mobilized peripheral blood (MPB) 

CD34+ cells (Graham et al., 2007), freshly isolated vs. 7d-cultured umbilical cord blood (UCB) 

CD34+ cells (Li et al., 2006), freshly isolated UCB CD34+CD38- vs. CD34+CD38- and 7d 

culture-derived slow dividing (SDF) and fast dividing (FDF) cells (Wagner et al., 2004), a shared 

UCB and MPB CD133+ cell profile (Chambers et al., 2007), UCB CD34+ culture-derived 

erythroblasts (CD235a+), monoblasts (CD14+), myeloblasts (CD14-), and megakaryoblasts 

(CD41+) (Ferrari et al., 2007), bone marrow (BM) CD34+ culture-derived erythroblasts (CD71+), 
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gruanuloblasts (CD15+), and megakaryoblasts (CD61+) (Komor et al., 2005), 10 primary murine 

hematopoietic cell populations as defined in the Hematopoietic Fingerprints Database (Chambers 

et al., 2007), and 37 primary human tissues as defined in (Ge et al., 2005).  The murine genes 

defined in the Hematopoetic fingerprints database database were converted to their human 

orthologues by mapping gene symbols using the Gene ID conversion tool provided in the web-

based software and database DAVID (http://david.abcc.ncifcrf.gov/home.jsp) (Dennis et al., 

2003), resulting in slightly greater than 50% mapping efficiency.  These were compiled to 

produce a non-redundant list of 5390 Affymetrix probesets (genes), each assigned membership 

in ≥ 1 gene set.  From this mapping, we computed the distribution of gene-gene set 

memberships, and pair-wise fractional gene overlap between gene sets (defined as the number of 

shared genes / total number of genes in each gene set). 

  

Microarray data processing 
Arrays were normalized via smoothing spline-least squares regression, artefacts removed, and 

expression indices (Probe Match/Mismatch; PM/MM) and present/absent calls (P/A) calculated 

based on the Model Based Expression Index (MBEI) method of Li and Wong (Schadt et al., 

2000).  For differential expression analysis, probe sets were first filtered as follows: 

0.5 < Coefficient of Variation (CV) between samples < 1000   

P call in arrays used  ≥ 10%  

PM/MM > 20  

CV within replicates < 0.5     

Thereby removing genes that are not differentially expressed, genes that are absent in all 

samples, and genes with high replicate variability.  5,939 of the 54,693 probe sets on the array 

(10.9%) were thus considered for further analysis. For pairwise sample comparisons, P-value 

cut-offs were adjusted so as to simultaneously minimize the false discovery rate (FDR; 

calculated via random sample permutations) and maximize sensitivity.   

 

Inter-cellular network reconstruction process   

The following Boolean logic operations were performed on each ligand (L) receptor (R) pair: 

TRUE IF L = P AND L (PM/MM) > 50 AND [R1 OR R2 OR….RN = P]    
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Where R1, R2, …RN represent the different possible receptors for a particular ligand.  An 

expression index of PM/MM > 50 was chosen based on our proteomic data for confidence that 

the given ligand will be present at detectable levels in the media.  Specific autocrine / paracrine 

interactions were constructed between the Lin- and Lin+ populations based on the choice of L, R 

as follows: 

For Lin- autocrine signalling; L = Lin-, R = Lin- 

For Lin+ autocrine signalling: L = Lin+, R = Lin+ 

For Lin- to Lin+ paracrine signalling; L = Lin-, R = Lin+ 

For Lin+ to Lin- paracrine signalling; L = Lin+, R = Lin- 

 

This analysis produced a list of the inter-cellular signalling loops active for each culture 

condition (58 in total, ranging from 26 to 41 activate per condition).     

 

An excel file is provided (Supplementary excel worksheet) which semi-automates the 

reconstruction process using Affymetrix HU133 expression profiles in assigning combinatorial 

ligand-receptor interactions.  By pasting a matrix of expression indices for specific cell 

populations corresponding to the secreted factor (SF_A) and receptor (R_A) probeset IDs, 

subsequent worksheets calculate unique expression indices for each gene (SF_B and R_B), 

assign combinatorial secreted factor-receptor interactions (R_C and R_D) and call for the 

presence/absence (1/0) of secreted factor-receptor interactions based on user defined expression 

thresholds (SF_Call and R_Call).             

 

The Lin+ population is heterogeneous, comprised of all erythro-myeloid lineages (monocyte, 

granulocyte, erythrocyte, and megakaryocyte).  To estimate which mature cell sub-populations 

within the Lin+ population were responsible for specific interactions, and thereby better define 

the inter-cellular network architecture, gene expression profiles of in vitro-generated 

erythrocblasts megakaryoblasts, and monoblasts published in (Ferrari et al., 2007) and described 

above were downloaded.  These expression profiles were chosen as the cell populations were 

generated under similar conditions (short-term liquid culture of UCB CD34+ progenitors), as 

reflected in the Activity scores.    
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As the authors used a different normalization procedure (Robust Multi-array Average (RMA)) 

rather than Model Based Expression Index (MBEI) applied to our data, the expression indices 

are not directly comparable.  However, the expression distributions are very similar.  We applied 

a conservative cut-off and defined genes with expression indices in the top 40% as positive (P) 

and bottom 60% and absent (A).  For each of the 58 signalling loops scored as active in one or 

more culture condition, differential expressed genes, and proteins detected in conditioned media, 

P/A calls for the ligands and receptors in the Lin- d8-SE population (our data) as well as the 

erythrocblast megakaryoblast, and monoblast populations (Ferrari et al. (2006) data).  This 

information was converted to a directed graph with 2 classes of vertices (cell populations and 

ligands), and edge directionality indicating cell population-specific ligand and receptor 

expression, producing a set of theoretical cell-cytokine-cell interactions represented as a directed 

graph. 

 

Hypergeometric Z-score calculations 

For transcriptome-secretome comparisons we wished to test whether proteins with highly 

expressed transcripts were more likely to be detected in conditioned media.  We compiled 

secreted factor gene sets corresponding to the antibodies on the Luminex (28) and Raybiotech 

(94) arrays (overlap = 68).  For each time-point / culture condition at which conditioned media 

was profiled (d4, d8-NSNE, d8-SE, d12), corresponding mRNA expression indices (PM/MM) 

were calculated based on the average of the Lin+ and Lin- populations.  Protein signals were 

converted to binary values (1/0) based on their detection, and mRNA expression indices 

(PM/MM) converted to an expression ranking from highest (100 percentile) to lowest (0 

percentile).  For RayBiotech Antibody arrays N = 380 and R = 22; for Luminex Liquid Chip 

arrays N = 112 and R = 29.  A quartile sample size (n = 95 and 28 respectively) was used to 

calculate Z-scores across the expression ranking (i.e. from 0-25% to 75-100%).  Different sample 

sizes (n = 0.05×N through 0.5×N) were tested however the 25% window was found to produce 

an optimal balance of high resolution and minimal noise.          

 

For the ligand validation studies we wished to test whether the distribution of stimulatory and 

inhibitory effects on LTCIC output was statistically correlated to our predictions.  For 
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stimulatory effects N = 17, R = 3, n = 5, and r = 3; for inhibitory effects N = 17, R = 7, n = 7, and 

r = 5; and for null effects N = 17, R = 7, n = 5, and r = 4.       

 

To test whether the common stimulatory and inhibitory signal transduction molecules were 

enriched in the self-renewal we considered N = total genes in the PANTHER pathways database 

= 2995; R = overlap with the HSC self-renewal network = 599 (20%); n = common signal 

transduction molecules = 35; r = overlap with the active HSC self-renewal network = 22 (63%).         

 

To test whether the 15 genes from Deneault et al. (2009) were statistically enriched in the HSC 

self renewal network, we considered as background gene set the annotated genes (assigned an 

Entrez Gene ID) represented on the Affymetrix HU133 Plus2 GeneChip, as the authors compiled 

data from gene expression studies, and only well-annotated genes generally have human-mouse 

othologues; N = 20177, R = 15, n = 1728, and r = 6. 

 

Characterization of cell cycle and apoptosis of CD34+ and CD34- cells in culture 

UCB Lin- cells were labelled with 10uM Carboxyfluorescein succinimidyl ester (CFSE; 

Invitrogen) for 10 min at 37˚C.  Cells were then quenched on ice with HBSS + 20% FBS and 

washed 3 times. CSFE-stained cells were sorted for the middle 50% of the CFSE peak using a 

FACS ARIA sorter (BD Biosciences, Franklin Lakes, NJ, USA) to tighten the peak distribution. 

Supplements were added to baseline cell culture media, and cultures performed as described 

previously. Samples were taken for cell counting and flow cytometry analysis on day 2, 4, 6, and 

8 of culture.  CFSE labelled cells were stained for CD34-APC (Beckman Coulter), and 

unlabelled cells co-stained for CD34-APC and Annexin V-FITC (Biovision, Mountain View, 

CA, USA) as described above.  Samples were analyzed on a FACS CANTO Instrument (BD 

Biosciences) and data analysis performed with FACSDiva software (BD Biosciences).  For 

CFSE staining, up to 9 peaks (representing successive cell divisions) were discernible by day-8 

of culture.  Gates were set around peaks and the fraction of total cells within each gate 

quantified.  The average generation number of the cultured cell populations was then calculated 

as the number of cell divisions × fraction of the population within the given division.       
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Model description 

The hematopoietic hierarchy can be divided into a number of discrete compartments, from long-

term repopulating hematopoietic stem cells (LT-HSC) to fully differentiated mature cells.  Each 

compartment can be viewed as representing a cell population at a distinct state of maturation, 

with unidirectional transition between compartments (differentiation) associated with cell 

cycling.  A cell population balance can be constructed around each compartment (i) where the 

number of cells in the compartment (Xi) is dependent upon the number of cells entering from the 

previous compartment (Xi-1), the cell proliferation rate (ui), and the probability of self-renewal (fi) 

as depicted in Figure S4A.  The cellular growth rate for compartment i is given by the equation: 

 

  for i = [1, 2, 3, …., n]  (1) 

 

A system of ordinary differential equations (ODE) is therefore constructed which describes the 

growth of each cellular compartment for a total of n compartments, with compartment 1 (X1) 

representing LT-HSCs, and terminally differentiated mature cells represented by compartment n 

(Xn).  Specific compartments can be ascribed to experimentally measurable cellular assays.  The 

functional measures considered are long-term Non-Obese Diabetic (NOD)-Scid mouse 

repopulating cells (SRC), long-term culture-initiating cells (LTCIC), and colony forming cells 

(CFC), which readout stem cells, primitive progenitors, and mature progenitors respectively.  We 

additionally characterize the cells phenotypically as undifferentiated Lin- or differentiated Lin+.     

 

The cell-level kinetic parameters ui and fi are not constant, but functions of differentiation status, 

time in culture, and secreted molecule-mediated inter-cellular networks.  We used Gaussian-type 

functions to describe kinetic variables as functions of compartment number (i), a Hill-type 

function to introduce a lag-phase and therefore an explicit time (t) dependency, and coupled Hill-

type functions to incorporate the effects of secreted regulatory factor concentrations (SF1-4), 

represented schematically in Figure S4B.  The use of well mixed, liquid suspension cultures 

allows for the assumption of spatial homogeneity, thus all cells would be exposed to an identical 

microenvironment.  The resulting master equations define ui and fi respectively as functions of 

compartment number (i), time (t) and secreted factor concentrations (SF1-4):       
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  (2) 

     (3) 

 

The secreted factors (SF1-4) thus producing an inter-cellular communication network, structured 

as a coupled positive-negative feedback control circuit between the Lin+ and Lin- cell 

populations.  Stem and progenitor cell population dynamics are thus dependent upon the 

composition and functional activity of differentiated cells.  The model contains 16 free 

parameters, inaccessible to experimental measurement.  These were therefore estimated using a 

hybrid genetic algorithm and data from (Madlambayan et al., 2005) as a training set.  The 

resulting values are shown in the table below 

P DESCRIPTION UNITS EST 
uMAX Maximum proliferation rate of lin- cells day-1 6.26 × 100 
u+ Maximum proliferation rate of lin+ cells day-1 2.04× 10-1 

nMAX Compartment with maximal proliferation - 5.32 × 100 
DGR Proliferative decay term - 3.38 × 100 
fMAX Self-renewal probability of LT-HSC - 6.34 × 10-1 
DSR Self-renewal decay term - 1.96 × 100 
sr1 Secretion rate of SF1  pg/cell.day 2.37 × 10-5 
sr2 Secretion rate of SF2  pg/cell.day 2.93 × 10-5 
sr3 Secretion rate of SF3  pg/cell.day 5.96 × 10-6 
sr4 Secretion rate of SF4  pg/cell.day 5.30 × 10-6 
k1 Hill coefficient for SF1 (Equation 14) - 6.14 × 10-1 
k2 Hill coefficient for SF2 (Equation 15) - 5.55 × 10-1 
k3 Hill coefficient for SF3 (Equation 14) - 6.25 × 10-1 
k4 Hill coefficient for SF4 (Equation 15) - 5.33 × 10-1 
Ls [SF1] inducing ½ maximal SF2 secretion  pg/ml 9.15 × 10-1 
ks Hill coefficient for SF1 (Equation 9) - 1.08 × 100 

 

See Kirouac et al. (2009) for a more thorough description, analyses, and comparison to 

experimental data. 
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Model-based classification of ligand and small molecule functional activities 

This is essentially a model discrimination problem, wherein rather than testing alternative model 

structures or parameter sets, we are tuning individual model variables [input SF1-4 

concentrations, or baseline self-renewal (fMAX) and proliferation (uMAX) rates] to fit experimental 

data (culture supplementation with ligands or small molecule supplementation).  While the 

problem is not amenable to standard statistical tests of significance, we can use the well 

established model discrimination metric, the Akaike Information Criterion (AIC) to compare 

model variations (Kreutz and Timmer, 2009).  As the number of parameters is conserved, the 

difference in AIC values used for comparing model variations (ΔAIC) is reduced to comparing 

the Weighted Residual Sum of Squares (WRSS), defined as: 

  

          (4) 

 

For N observables (in this case N = 3; the % change in TNC, CFC, and LTCIC expansion over 8-

days in culture induced by media supplements), wherein Ei = experimental observation, Si = 

simulated observation, and STDi = standard deviation of experimental measurement, and wi = 

weighting term, chosen as the P-valuei
-1, thus weighting by statistical significance (Landaw and 

DiStefano, 1984).  To functionally classify ligands as specific model variables (SF1-4) we first 

simulated TNC, CFC, and LTCIC growth over 8-day cultures over a range of SF1-4 input 

concentrations, thus producing 4 theoretical dose-response curves.  We then calculated the WRSS 

for each experimentally tested ligand across each theoretical dose response (SF1-4 = 0.1-10 × 

ED50), identified the minimum value (WRSSMIN), and divided this by the control WRSS (SF1-4t=0 

= 0; WRSScontrol), producing a term which linearly correlates with ΔAIC, defined as ΔWRSS: 

 

          (5) 

 

If ΔWRSS < 1, assignment of the experimentally tested ligand as the given SF fits the data better 

than control, where minimum values represent the best classification.  
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Analogously, to classify the small molecule kinase inhibitors as stimulators vs. inhibitors of self-

renewal or proliferation, TNC, CFC, and LTCIC growth was simulated over a range of self-

renewal (fMAX) and proliferation (uMAX) rates.  We then calculated the ΔWRSS values for each of 

the five kinase inhibitors against |uMAX| and |fMAX| > 10% control.    

 

 

Robustness of statistical gene set enrichment to PPI confidence filters  

Many algorithms are available for connecting seed nodes (Huang and Fraenkel, 2009; Pinkert et 

al., 2010; Yosef et al., 2009), however the utility of various alternatives against our approach in 

this case is not obvious.  Our objective was to look for statistical enrichment of target genes 

(common signalling molecules) interacting with known HSC self-renewal modulators expressed 

in the cultured Lin- cells.  The most straight forward approach was therefore to filter for 

expressed genes, and perform a search for interactions in a PPI meta-database (i2D).  While PPI 

databases are notoriously noisy (Cusick et al., 2009), for our purpose we are not focused on 

validating specific interactions, but rather using the networks for statistical analysis which should 

be robust to a limited amount of false positives.  To test the robustness of our statistical analysis 

against false positives, we decided to test the algorithm against a series of increasingly 

stringently filtered PPI networks.  Intuitively, interactions represented in more than one database 

carry more confidence (Ramirez et al., 2007).  We define the “edge weight” as the number of 

databases (represented in i2D) a given edge is represented in.  As shown in Figure S6A, the 

distribution of edge weights for the “active self-renewal” PPI network follows an approximate 

scale-free distribution (almost 70% of edges found only once, while 1 edge is represented 30 

times).  We then filtered the network for edge weights of at least 1 (all edges), 2, 3, 4 and 5, and 

scored the resultant networks for enrichment of the target gene set using the Hypergeometric Z-

Score.  Networks filtered for edge weights of greater than 1, 2, and 3 are all significantly 

enriched for the common signalling molecules (P-value = 3.5×10-9, 10-4, and 10-6 respectively), 

while networks filtered on edge weights of 4 and up become increasingly small to detect 

statistically relevant numbers of target genes (predicted gene overlap < 1 for networks filtered on 

edges weights of 4 and above) (Figure S6B).  This, while the liberal PPI networks used may 

have high error rates, the results of our analysis are robust to increasingly stringent confidence 

filters.   
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SUPPLEMENTARY FIGURE LEGENDS 

Figure S1.  mRNA expression indices correlate with cell surface expression and secretion of 

proteins. 

(A) mRNA expression indices (PM/MM) of CD34, CD133, CD38, and ABC-B1 transcripts vs. 

fluorescence of corresponding cell surface proteins (CD34, CD38, and CD133) and functional 

activity (Rho123 exclusion) measured via flow cytometry throughout culture.  Four parameter 

logistic curves were fit to the individual data sets with r2 values as indicated on the figure of 

0.97, 0.60, 0.88, and 0.92 respectively.  (B) Hypergeometric Z-Scores for the expression ranking 

of a secreted protein transcript vs. the probability of detection in conditioned media via Luminex 

(red) and Raybio (blue) antibody array systems, using a quartile sampling size.  Z-scores of ± 2 

are indicated by dashed lines, corresponding to enrichment / depletion P-values < 0.05.   

 

Figure S2.  Activity scores for 55 published gene sets averaged across 10 Experimental 

Samples. 

Activity scores were computed for the 55 cell type-characteristic gene sets described in Table S1 

for each of the 10 profiles.  Average Activity Scores across the 10 populations ± standard 

deviations are shown for each gene set.  

 

Figure S3.  Gene overlap between 55 published gene sets. 

(A) Assignment of individual genes into 1 or more of the 55 characteristic gene sets.  The 

distribution of gene set membership follows an approximate scale-free distribution; the majority 

of genes (87%) being gene set-specific and only 0.003% members of 4 different sets.  (B) Pair-

wise comparison of fractional gene overlap between all 55 gene sets, represented as a square 

matrix color coded from 0% to 100% overlap.        

  

Figure S4.  Quantitative ELISA measurements of serotonin (5HT) in conditioned media.   

Error bars represent standard deviation (std), n = 3.     

 

 

Figure S5.  Functional effects of serotonin (5HT1), the TGF-β inhibitor SB505124, and 

select combinatorial ligand stimulation on culture output.             
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8-day fold expansion of total cells (TNC), progenitors (CFC), and primitive progenitors (LTCIC) 

from liquid cultures supplemented with serotonin (5HT) (A) or SB505124 (B) compared to 

control cultures.  While results are not statistically significant (p ≥ 0.1) performing more 

replicate experiments would enhance the statistical power and may add confidence to the results.  

(C) Select stimulations with multiple stimulatory (EGF, HGF, VEGF) and inhibitory (CCL3, 

CCL4, CXCL8, CXCL10) lignads reveal non-linear combinatorial effects, as the functional 

effects of single ligands are reduced by co-stimulation.  Error bars = std, n = 3 (A, C) and n = 7 

(B).     

 

Figure S6.  Schematic representation of co-culture bioassay workflow.   

Representative FACS sorting strategy and colony readouts.  Blue arrows indicate work flow.    

 

Figure S7.  Tracking proliferation and apoptosis in CD34+ cells throughout culture. 

(A) Representative CFSE and AnnexinV fluorescence distributions for CD34+ cells over 8 days 

in culture.  (B) Quantification of the effects of TGFB2, CCL4, and VEGF stimulation on the 

average generation number (derived from CFSE plots; i) and % AnnexinV+ cells (ii) at days 2, 4, 

and 6 in comparison to control culture.          

 

Figure S8.  Schematic representation of mathematical model structure and use in 

classifying endogenous ligand functional activities. 

(A) The hematopoietic hierarchy is represented as a series of discrete cellular compartments.  

The number of cells in each compartment (Xi) is determined by the balance of cells entering due 

to differentiation from the previous compartment (Xi-1), cells leaving due to differentiation and 

cell death, and cell amplification due to self-renewal.  (B) Compartment-specific proliferation 

rates and self-renewal probabilities are modulated by the balance of stimulatory (SF3, SF4) and 

inhibitory (SF1, SF2) regulatory factors secreted in lineage-specific patterns by differentiated 

cells, forming a coupled positive-negative feedback circuit.  (C) Differential Weighted Residual 

Sum of Squares (ΔWRSS) for each secreted factor (SF1-4) supplement simulations vs. control 

for 10 endogenous ligands with significant effects, as well as the small molecules serotonin 

(5HT) and the TGF-βR inhibitor SB505124.  Values below 1 fit the data better than control, 

where minimum values (indicated with asterisks) represent the best classification.             
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Figure S9.  Reconstructed intra-cellular self-renewal signalling network.      

(A) A curated list of 112 genes known to effect HSC self-renewal was searched against the i2D 

protein interaction database for binding partners, resulting in a densely connected network of 

2131 vertices and 5431 (non-unique) edges.  For clearer visualization of the individual genes, the 

network was filtered to display only direct physical interactions between the self-renewal 

effectors, resulting in 104 genes connected through 180 (unique) edges (B).  Sub-networks 

constructed from the first-neighbours shared neurotransmitter signalling molecules (C) and self-

renewal enhancing nuclear factors reported in Deneault et al. (2009) (D) active in culture are 

highly enriched for self-renewal-associated genes.    

 

Figure S10. Effect of “edge weight” filtering on statistical enrichment of gene sets. 

(A)  Approximate scale-free distribution of edge weights (defined as independently reported 

interactions in the i2D database) in the intra-cellular self-renewal network.  (B)  Statistical 

enrichment of the common signal transduction molecules in networks filtered for edge weights 

of greater than 1 to 5.  Z-Scores > 2 correspond to P-values < 0.05.  Numbers indicate the 

number of common signal transduction molecules present in the various networks / expected by 

chance.                     

 

Figure S11.  Classification of 5 kinase inhibitors functional activities via Differential 

Weighted Residual Sum of Squares (ΔWRSS).  ΔWRSS for simulations of inhibition vs. 

stimulation of self renewal and proliferation, compared to by control for the 5 kinase inhibitor 

treatments.  Values below 1 fit data better than control, where minimum values (indicated with 

asterisks) represent the best classification.               

	  



103

e
S1A

r2 = 0.97

r2 = 0.88

101

102

F
lu

or
es

ce
nc

e

CD34
CD133
CD38

r2 = 0.92

r2 = 0.60

14
Luminex

101 102 103
100

mRNA (PM/MM)

CD38
Rho123

S1B

4

6

8

10

12

-S
co

re

Luminex
RayBio

mRNA Expression Rank

10 20 30 40 50 60 70 80 90

-4

-2

0

2

4

Z
-

mRNA Expression Rank



Chambers - Erythrocyte
Ferrari - Monoblast

Grahm - PB CD34+ G0
Ferrari - Erythroblast

Grahm - PB CD34+ G2-S
Ferrari - Megakaryoblast

--
S2

Chambers - Differentiated
Wagner - CD34+CD38+

Komor - Megakaryopoiesis
Assouu - hESC

Wagner - CD34+CD38- FDF
Ge - Fetal_Liver

Torren - AC133+
Li - CD34+ Cultured

Komor - Erythropoiesis
Ge - Skeletal_Muscle

Li - CD34+ Fresh
Ge - Testis

Ferrari - Myeloblast
Wagner - CD34+CD38- SDF

Chambers - Monocyte
Ge - Bone_Marrow

Wagner  CD34+CD38
Ge - Adrenal_gland

Ge - Fetal_Lung
Ge - Prostate

Chambers - Bcell
Chambers - Lymphoid

Ge - Spleen
Chambers - Granulocyte
Komor  Erythropoiesis

Ge - Lung
Ge - Ovary

Chambers - Myeloid
Chambers - HSC
Chambers - NK

Ge - Bladder
Ge - Thymus

Wagner - CD34+CD38-

Ge - Stomach
Ge - Thyroid
Ge - Breast
Ge - Uterus
Ge - Heart

Ge - Trachea
Chambers - Tcell

Ge - Salivary_gland

Ge - Brain
Ge - Placenta

Ge - Colon
Ge - Pancreas

Ge - Kidney
Ge - Fetal_Brain

Ge - Small_Intestine
Komor - Granulopoiesis

Ge - Skin
Ge - Liver
Ge  Brain

-10 -5 0 5 10 15 20 25 30

Average Activity Score (a
g
)



103

104

es

S3A

1 2 3 4
101

102

N
o.

 G
en

Gene Set Membership

Ge - Uterus 
Ge - Trachea 
Ge - Thyroid 
Ge - Thymus 

Ge - Testis 
Ge - Stomach 

Ge - Spleen 
G S ll I t ti

S3B

Ge - Small_Intestine
Ge - Skin 

Ge - Skeletal_Muscle
Ge - Salivary_gland

Ge - Prostate 
Ge - Placenta 

Ge - Pancreas 
Ge - Ovary 
Ge - Lung 
Ge - Liver 

Ge - Kidney 
Ge - Heart 

Ge - Fetal LungGe Fetal_Lung
Ge - Fetal_Liver
Ge - Fetal_Brain

Ge - Colon 
Ge - Breast 

Ge - Brain 
Ge - Bone_Marrow

Ge - Bladder 
Ge - Adrenal_gland

Torren - AC133+ 
Wagner - CD34+CD38- SDF 
Wagner - CD34+CD38- FDF 

Wagner - CD34+CD38+ 
W CD34 CD38Wagner - CD34+CD38-

Komor - Megakaryopoiesis
Komor - Granulopoiesis
Komor - Erythropoiesis

Ferrari - Megakaryoblast
Ferrari - Myeloblast
Ferrari - Monoblast

Ferrari - Erythroblast 
Chambers - Lymphoid 

Chambers - Myeloid 
Chambers - Differentiated 

Chambers - Erythrocyte 
Chambers - GranulocyteChambers Granulocyte 

Chambers - Monocyte
Chambers - NK 

Chambers - Tcell
Chambers - Bcell
Chambers - HSC 

Li - CD34+ Cultured 
Li - CD34+ Fresh 

Grahm - PB CD34+ G2-S 
Grahm - PB CD34+ G0 

Assouu - hESC

E
S

C
G

0
 

2
-S

 
e

sh
 

u
re

d
 

H
S

C
 

B
ce

ll
T

ce
ll

N
K

 
cy

te
cy

te
 

cy
te

 
a

te
d

 
lo

id
 

h
o

id
 

la
st

 
la

st
la

st
la

st
e

si
s

e
si

s
e

si
s

D
3

8
-

3
8

+
 

F
D

F
 

S
D

F
 

3
3

+
 

a
n

d
d

d
e

r 
ro

w
ra

in
 

e
a

st
 

o
lo

n
 

ra
in

iv
e

r
u

n
g

e
a

rt
 

n
e

y 
iv

e
r 

u
n

g
va

ry
 

e
as

 
e

n
ta

 
ta

te
 

a
n

d
sc

le
S

ki
n 

tin
e

e
e

n
 

a
ch

 
e

st
is

 
m

us
 

ro
id

 
h

e
a

 
e

ru
s 

A
ss

o
u

u
-

h
E

G
ra

h
m

-
P

B
 C

D
3

4
+

 
G

ra
h

m
-

P
B

 C
D

3
4

+
 G

L
i -

C
D

3
4

+
 F

r e
L

i -
C

D
3

4
+

 C
u

ltu
C

h
a

m
b

e
rs

 -
H

C
h

a
m

b
e

rs
 -

B
C

h
a

m
b

e
rs

 -
T

C
h

a
m

b
e

rs
 -

C
h

a
m

b
e

rs
 -

M
o

n
o

c
C

h
a

m
b

e
rs

 -
G

ra
n

u
lo

c
C

h
a

m
b

e
rs

 -
E

ry
th

ro
c

C
h

a
m

b
e

rs
 -

D
iff

e
re

n
tia

C
h

a
m

b
e

rs
 -

M
ye

C
h

a
m

b
e

rs
 -

L
ym

p
h

F
e

rr
a

ri 
-

E
ry

th
ro

b
F

e
rr

a
ri 

-
M

o
n

o
b

F
e

rr
a

ri 
-

M
ye

lo
b

F
e

rr
a

ri 
-

M
e

ga
ka

ry
o

b
K

o
m

o
r

-
E

ry
th

ro
p

o
ie

K
o

m
o

r
-

G
ra

n
u

lo
p

o
ie

K
o

m
o

r
-

M
e

ga
ka

ry
o

p
o

ie
W

a
gn

e
r 

-
C

D
3

4
+

C
D

W
a

gn
e

r 
-

C
D

3
4

+
C

D
3

W
a

gn
e

r 
-

C
D

3
4

+
C

D
3

8
-

F
W

a
gn

e
r 

-
C

D
3

4
+

C
D

3
8

-
S

T
o

rr
e

n
-

A
C

1
3

G
e

-
A

d
re

n
a

l_
gl

a
G

e
-

B
la

d
G

e
-

B
o

n
e

_
M

a
r

G
e

-
B

r
G

e
-

B
re

G
e

-
C

o
G

e
-

F
e

ta
l_

B
r

G
e

-
F

e
ta

l_
L

G
e

-
F

e
ta

l_
L

u
G

e
-

H
e

G
e

-
K

id
G

e
-

L
G

e
–

L
u

G
e

-
O

v
G

e
-

P
a

n
cr

e
G

e
-

P
la

ce
G

e
-

P
ro

st
G

e
-

S
a

liv
a

ry
_

g
la

G
e

-
S

ke
le

ta
l_

M
u

s
G

e
-

S
G

e
-

S
m

a
ll_

In
te

st
G

e
-

S
p

le
G

e
-

S
to

m
a

G
e

-
T

e
G

e
-

T
h

ym
G

e
-

T
h

yr
G

e
-

T
ra

ch
G

e
-

U
te



400

500

)
S4

100

200

300

er
ot

o
ni

n 
(p

g/
m

L

fresh d4 d8-SE d8-NSNE d12
0

100

S
e



S5A S5B

140

160 P = 0.20

0
20
40

P = 0.13

P = 0.10

40

60

80

100

120

nt
ro

l E
xp

an
si

on

160
-140
-120
-100

-80
-60
-40
-20

0
 

nt
ro

l E
xp

an
si

on

0

20

40

 

%
 C

on

-240
-220
-200
-180
-160

%
 C

on

TNC CFC LTCIC

400

600

on

S5C

200

0

200

400

 

C
on

tr
ol

 E
xp

an
si

o

-400

-200

%
 C

EGF EGF
HGF

VEGF

CCL4 CCL3
CCL4

CXCL8
CXCL10



D
34

S6

C
D

33

Rholo

RholoCD34+CD38-

Rho123 CD38

C
D

CD14

C
D

33CD33+CD14+

10 cell/well

CD15

C
DCD33 CD14

or

CD33+CD15+

or

CD41+

or

100 cell/well

FS

C
D

41

or

CD71+CD235a+

7-day culture

Re-plate wells onto 
LTCIC plates

CD71

C
D

23
5a1:1

1:4

1:10

7 week culture Limiting Dilution Analysis:  

0.6

0.8

1.0

iv
e

 w
el

ls

 1/10X
 1/5X
 1/2X
 1X
 2X
 5X
 10X

7-week culture

Visually score wells 
+/- for colonies

Calculate fold LTCIC expansion

+-

0 2 4 6 8 10
0.0

0.2

0.4

%
P

o
si

ti

Cells / Well



S7A

C
F

S
E

d0 d2 d4 d6 d8

A
nn

ex
in

V

d0 d2 d4 d6 d8

S7B i
TGFB2 CCL4 VEGF

0

5

u
m

be
r

-25

-20

-15

-10

-5  

G
en

er
ea

tio
n 

N
u

ii

-35

-30

-25

%
 C

on
tr

ol
 

50

100

150

200

250

nn
e

xi
n

V
+

TGFB2 CCL4 VEGF
-150

-100

-50

0

50

 

%
 C

o
n

tr
ol

 A
n

TGFB2 CCL4 VEGF

day-2 day-4 day-6



Self-renewal

Xi Cell Number at state i

u Proliferation rate (day-1)

S8A

Xi

Cell death

Differentiation outDifferentiation in
ui Proliferation rate (day 1)

fi Probability of self-renewal

di Cell death rate (day-1)

SF1   Proliferation inhibitor

SF2   Self-renewal inhibitor

SF1SF2

- -

Cell death

S8B

SF3 Proliferation stimulator

SF4 Self-renewal stimulator

HSC

SF3 SF4

Lin-

++

1

1 0 2

S8C

SF1

SF2

SF3

1 0 - 1

1 0 0

1 0 1

W
R

S
S

* * *

*
* * *

*
*

SF4

*

E
G

F

P
D

G
F

S
P

A
R

C

V
E

G
F

C
X

C
L

7

C
C

L3

C
C

L4

C
X

C
L

1
0

T
N

F
S

F
9

T
G

F
b

2

se
ro

to
ni

n

S
B

5
0

5
1

2
41 0 - 2



S9A

S9B S9C

S9D

Self rene al Sim lator

Binding partner

Self-renewal Simulator

Self-renewal Inhibitor

Sub-network bait

Physical interaction



5

6

1

100

S10A S10B

22/8

8/2

2

3

4

Z
-S

co
re

10-3

10-2

10-1

E
dg

e
 W

e
ig

h
t)

P = 0.05

10/3

1 2 3 4 5
0

1

Edge Weight

1 10
10-4

10

P
(

Edge Weight

1/0.7
0/0



PI3K Raf Akt PLC MEK1

-5

0

5
N

um
be

r

S11

-25

-20

-15

-10

5  

ol
 G

en
er

at
io

n 
N

-35

-30

%
 C

o
n

tr
o

125

50

75

100

125

A
n

n
e

xi
n

V
+

PI3K Raf Akt PLC MEK1-50

-25

0

25

 

%
 C

o
n

tr
ol

 A

day-2 day-4 day-6



0

101

Self-renewal inhibitor

Self-renewal stimulator

S11

10-2

10-1

100

W
R

S
S

Proliferation inhibitor

Proliferation stimulator

*

*
*

*

1. PI3K 2. Raf 3. Akt 4. PLC 5. MEK1
10-3

10

 


