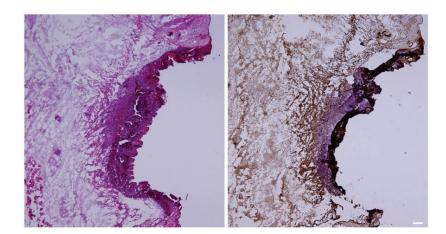
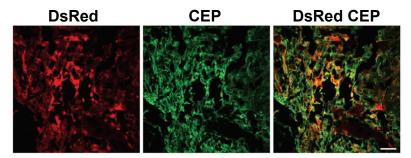
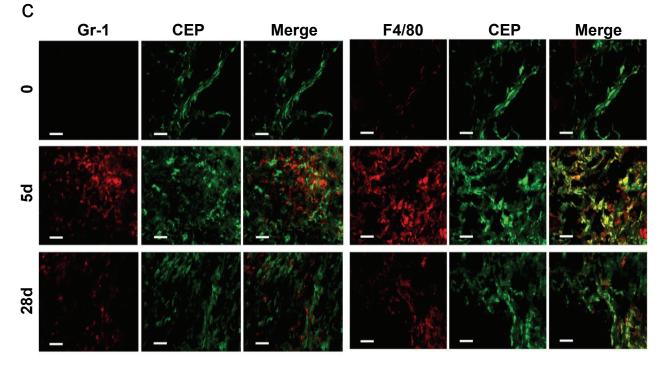


Fig.S1. Schematic diagrams of carboxyalkylpyrrole protein adduct (CAP) biogenesis.

HODA - 9-hydroxy-12-oxododec-10-enoic acid;

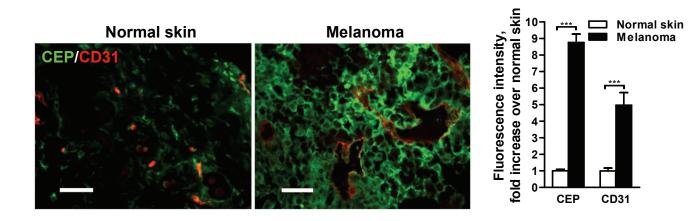

HOOA - 5-hydroxy-8-oxooct-6-enoic acid;

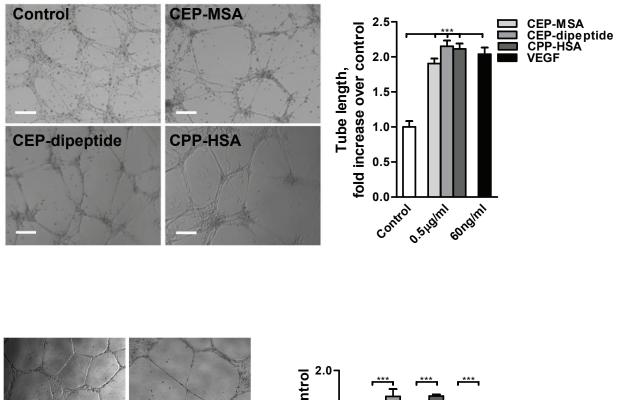

HOHA - 4-hydroxy-7-oxohept-5-enoic acid;

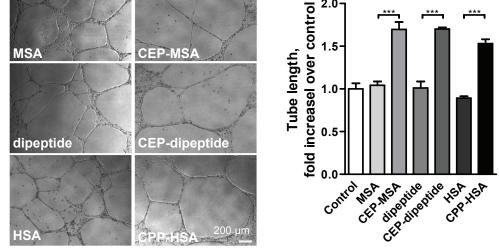

CHP - 2-(ω-carboxyheptyl) pyrrole;

CPP - 2-(ω-carboxypropyl)pyrrole;

CEP - 2-(ω -carboxyethyl)pyrrole.






Fig.S2. CEP is accumulated in wounded areas. **a.** Left - H&E staining of wound tissue collected 3 days after injury. Right – CEP immunostaining of the same wound; scale bar is 100 μ m. **b.** CEP (green) is present in bone marrow derived cells (red). Wound tissue was collected 5 days after injury from mice transplanted with bone marrow from DsRed expressing mice; scale bar is 50 μ m. **c.** Co-staining for Gr-1 (red), F4/80 (red) and endogenous CEP (green) in wound tissues before injury (0), 5 and 28 days after injury as indicated; scale bars are 40 μ m.

а

Fig.S3. Co-staining for CEP (green) and CD31 (red) in implanted mouse B16-F10 melanoma and normal skin of C57BL/6 mice as shown; scale bars are 40 μ m. Right- Quantifications of CEP intensity and vascularization (based on CD31 staining). Bars represent fold increase over control (normal skin), mean ± s.e.m., n=5. *** represents p<0.001 vs. normal skin.

Fig.S4. The pro-angiogenic effect of oxidized adducts is not restricted to a particular source of endothelial cells. **a.** Mouse Lung Microvascular EC (MLEC) tube formation assay: Left- representative micrographs of control (no treatments) and CEP-MSA, CEP-dipeptide and CPP-HSA treated cells; scale bars are 200 μ m. Right- quantification of tube formation assay (VEGF as positive control) as indicated. Bars represent fold increase over control, mean ± s.e.m., n=4. *** represents p<0.001. **b.** HUVEC tube formation assay: Left- representative micrographs of cells treated with CEP-MSA, CEP-dipeptide and CPP-HSA or unmodified proteins as indicated; scale bar is 200 μ m. Right-quantification of tube formation assay in the presence of CEP adducts or unmodified proteins. Bars represent fold increase over untreated control, mean ± s.e.m., n=5. *** represents p<0.001 vs. control.

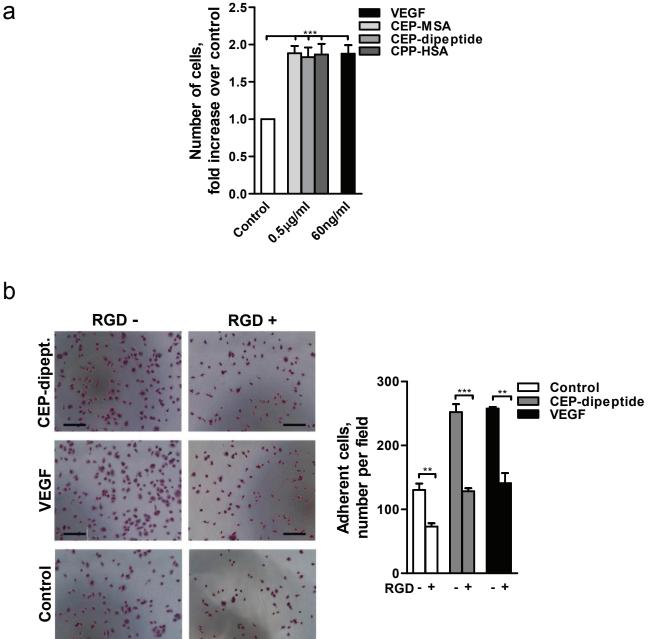
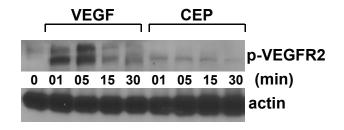
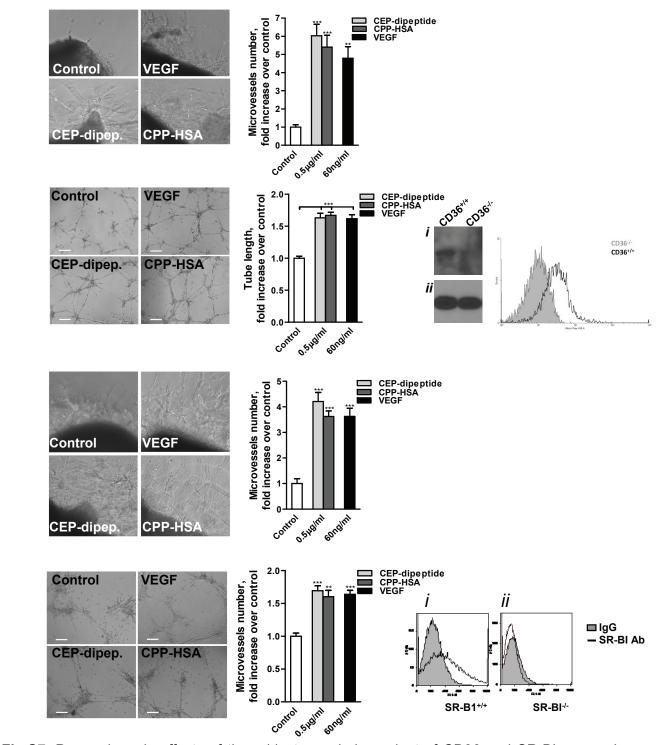
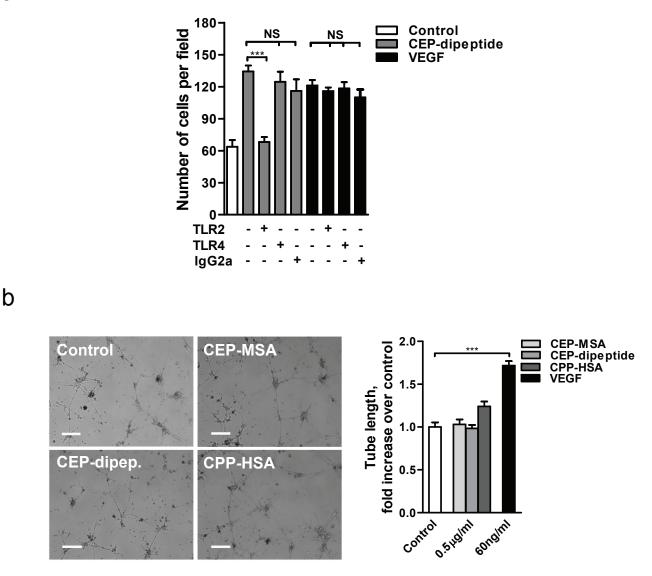
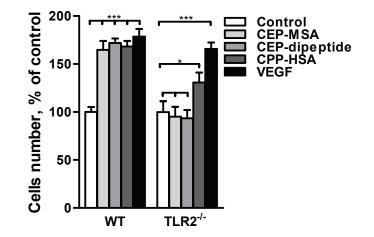
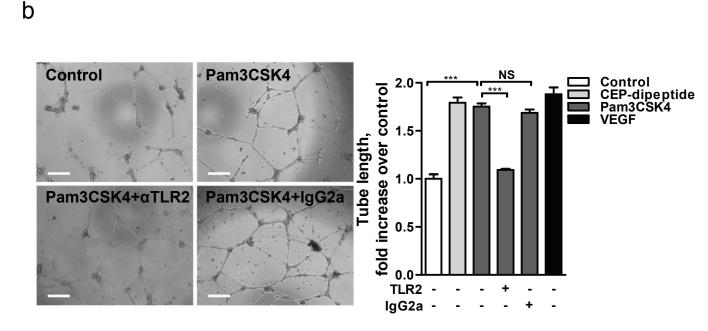




Fig.S5. a. HUVEC migration assay: Cells were treated with CEP-MSA, CEPdipeptide, CPP-HSA or VEGF at the indicated concentration or remained untreated (control). Bars represent percent increase over control, mean ± s.e.m., n=4. represents p<0.001. b. CEP induced effects are integrin-dependent. Cell adhesion assay, Left - staining with hematoxylin; scale bars are 150 µm, CEP dipeptide treatment 0.5µg/ml, VEGF 60ng/ml. RGD peptide added at a concentration of 1.5mM where indicated. Right- average cell number calculated in six independent fields, mean ± s.e.m. ** represents p<0.01 and *** represents p<0.001 vs. RGD-.

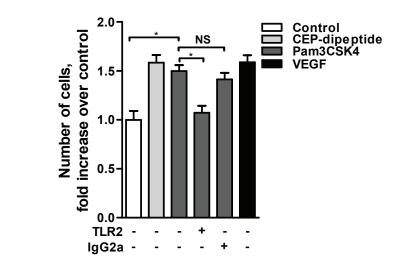
а

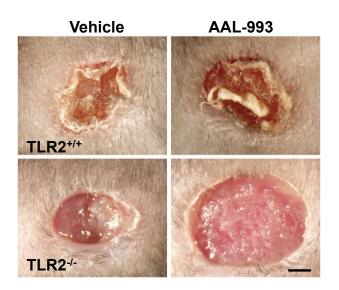

Fig.S6. The CEP adduct does not induce VEGFR2 kinase activity. HUVEC cells treated with VEGF (60ng/ml) or CEP-dipeptide (0.5µg/ml) for the indicated period of time were lysed and probed for phospho-VEGFR2 (top) or total actin (bottom).

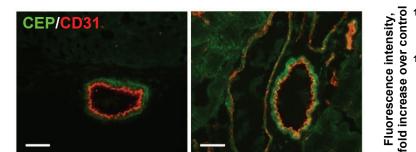

Fig.S7. Pro-angiogenic effects of the adducts are independent of CD36 and SR-BI expression. Aortic ring (**a**, **c**) and tube formation (**b**, **d**) assays using CD36 ^{-/-} (**a**, **b**) or SR-BI ^{-/-} (**c**, **d**) mice Leftrepresentative micrographs. Right- quantification of sprouts (a,c) or tube length (b,d) stimulated by CEP-dipeptide, CPP-HSA or VEGF (positive control) as described in Methods. Bars represent fold increase over control, mean \pm s.e.m., n=5. ** represents p<0.01 and *** represents p<0.001. **b**. Far right- CD36 is expressed in CD36^{+/+} but not CD36^{-/-} cells, both by FACS analysis and whole cell lysates probed on Western Blot with: *i* α -CD36 and *ii* α -actin antibodies. **d.** Far rightexpression of SR-BI was assessed on SR-BI^{+/+} (*i*) and SR-BI ^{-/-} (*ii*) endothelial cells by FACS analysis. Gray profile- staining with control antibodies, open profile- staining with SR-BI antibodies.


С

d




Fig.S8. CEP-induced responses are TLR2 dependent. **a.** HUVEC migration in presence of TLR2 or TLR4 blocking antibodies or non immune IgG2a antibodies as indicated. Migration assay performed as described in Methods using transwell inserts with 8 μ m pore size. Bars represent average cell numbers in six fields, mean ± s.e.m. NS represents not significant differences. *** represents p<0.001. **b.** Oxidized adducts fail to induce angiogenesis in tube formation assay using MLEC from TLR2-^{/-} mice. Left- representative micrographs of control (no treatments), CEP-MSA, CEP-dipeptide and CPP-HSA treated cells; scale bars are 200 μ m. Right- bars represent fold increase in vascularization over control (no treatment) after stimulation with CEP-MSA, CEP-dipeptide, CPP-HSA or VEGF (positive control) as indicated, mean ± s.e.m., n=4. *** represents p<0.001.


Fig.S9. a. Migration of MLEC cells in response to the adducts is dependent on TLR2 expression. Cell migration is expressed as % increase over control sample, mean \pm s.e.m., n=4. * represents p<0.05 and *** represents p<0.001 vs. control. **b.** HUVEC tube formation in response to Pam3CSK4 treatment is inhibited by TLR2 blocking antibodies but not by isotype control (IgG2a) antibodies; scale bars are 200 µm. Antibodies treatment was performed as described in Methods. Right – quantification of average tube length, mean \pm s.e.m., n=4. NS indicates not significant differences. *** represents p<0.001. CEP and VEGF-induced responses are shown for comparison.

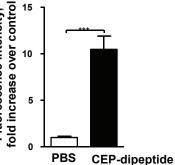
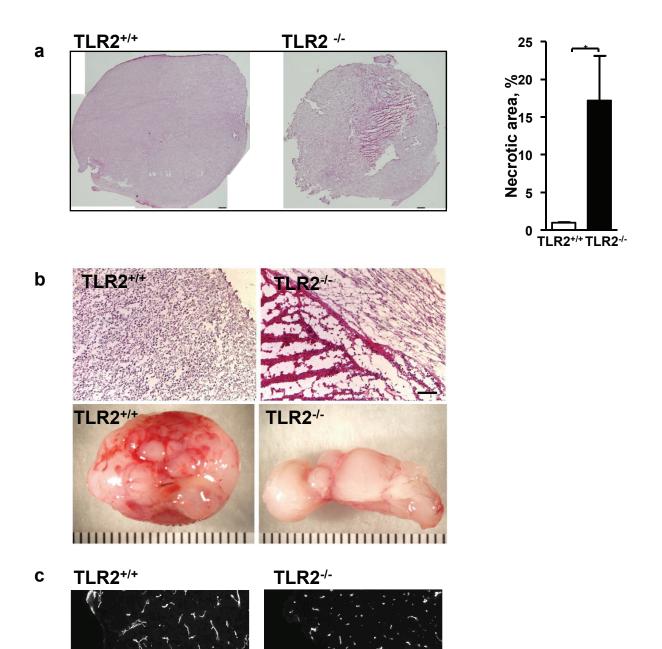


Fig.S10. a. HUVEC adhesion stimulated by Pam3CSK4 is TLR2 dependent. Cells were treated with Pam3CSK4 in the presence of absence of anti-TLR2 or isotype control (IgG2a) antibodies as indicated. Effects of CEP and VEGF are shown for comparison. Fold increase over control, mean ± s.e.m., n=4. NS represents not significant. * represents p<0.05. b. Lack of TLR2 expression and treatment with VEGFR inhibitor AAL-993 result in suppression of wound healing. Note an additive effect (right bottom image). Images of the wounds of TLR2^{+/+} (top) and TLR2^{-/-} animals (bottom) at day 6; after s.c. injections of AAL-993 (13nmol) or vehicle at days 0, 2, 4 and 5; scale bar is 1 mm.

а



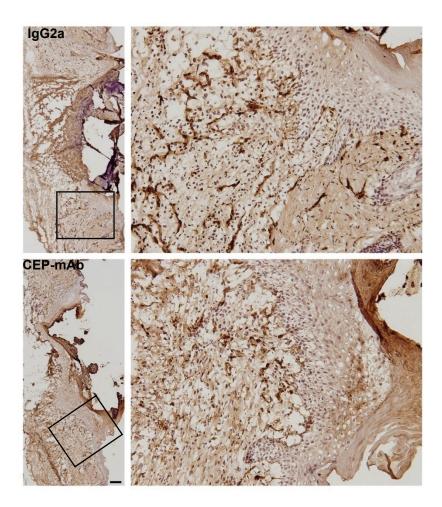

Ba CE-dipeptide

Fig.S11. a. Immunostaining of mouse hind limb muscle tissue one day after CEP-dipeptide (right) or PBS (left) injection as described in Methods. Red – CD31, green – CEP; scale bars are 40 μ m. Far right- bars represent fluorescence intensity over control, mean ± s.e.m., n=5. *** represents p<0.001. **b.** Images of the site of femoral artery ligation from the hind limb ischemia model (described in Methods). Left- The samples was obtained at day 28 after surgery after treatment with CEP or vehicle (PBS) by intramuscular injections as indicated; scale bars are 500 μ m. On the right - magnified view of the area indicated on the photograph on the left; scale bars are 500 μ m.

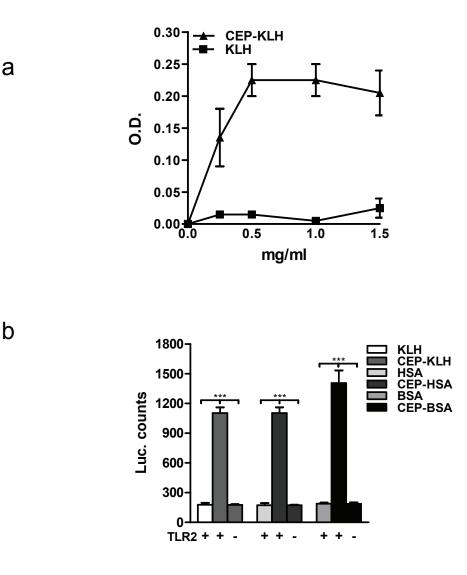

b

Fig.S12. TLR2^{+/+} or TLR2 ^{-/-} mice were injected subcutaneously with $4x10^5$ RM1 cells and sacrificed 12 days post implantation. **a.** Composite image of H&E staining across entire tumor; scale bar is 1 mm. Right– areas of necrosis were quantified based on H&E staining and expressed as % of total tumor area, mean ± s.e.m., n=4. * represents p<0.05. **b.** Top – higher magnification of tumor edge after H&E staining is shown, scale bar is 100 µm; Bottom – photographs of excised tumors; scale is 1 mm. **c.** CD31 staining of excised tumors. TLR2^{+/+} - left, TLR2^{-/-} -right; scale bars are 100 µm.

Fig.S13. Neutralization of endogenous CEP diminished vascularization of punch wounds. Prior to injury, mice were treated with control antibodies (IgG2a, top) or anti-CEP antibodies (CEP-mAb, bottom) by i.v. injections, 5µg per gram of body weight. Injections were performed 2h prior injury and every other day thereafter. After 7 days, tissues were collected, fixed and stained for CD31. Scale bar is 100 µm. Right– higher magnification image of the area indicated on the photograph on the left.

Fig.S14. a. TLR2 recombinant protein binding to the CEP-KLH adduct over a range of TLR2 protein concentrations. KLH protein is shown for comparison. 2µg CEP-KLH (triangles) or KLH (squares) were incubated on a 96-well polystyrene plate (Thermo Labsystems) overnight at 4°C and blocked with 5mg/ml BSA in PBS, followed by a wash with 1mg/ml BSA. We added the indicated amounts of recombinant TLR2 extracellular domain (R&D Systems) for 4h at room temperature then washed the plates. Detection was done with anti-TLR2 antibodies (clone TL2.1, eBioscience) and anti-mouse HRP-coupled antibodies (Bio-Rad). Quantification was done by a colorimetric assay (R&D Systems) at 560 nm using a Vmax plate reader (Molecular Devices). O.D. Optical density, mean ± s.e.m., n=3. **b.** A Luciferase reporter assay for NF-κB activation. TLR2 or empty vector transfection as shown on the x axis. HEK 293 cells were transfected with hTLR2 expression plasmid (InvivoGen) or control vector, as well as NF-κB luciferase reporter (gift from Dr. P. Chumakov, Cleveland Clinic). 24h post-transfection cells were exposed to CEP adduct or the carrier protein for an additional 8h. Reporter activity was measured with a luciferase assay system (Promega) and the readout was normalized to the protein content. Luciferase (Luc.) counts, mean ± s.e.m., n=3. *** represents p<0.001.