Supplementary Figure legends

Suppl. Fig. 1. Comparison of the beginning 850nt in the first intron between human and mouse TMEPAI genes. Identical nucleotides between human and mouse show (-).

Suppl. Fig. 2. Effect of Smad2-specific siRNA on TGF-β-induced pGL3ti-850 activity. (left) HepG2 cells transfected with Smad2-specific siRNA (Nippon EGT) (1) together with pGL3ti-850 were stimulated with TGF-β. Control siRNA (Nippon EGT) means a non-targeting siRNA. Transfection wasa carried out using lipofectamine 2000. (right) The expression of endogenous Smad2 was detected with an anti-Smad2 antibody (2) by western blot analysis.

Suppl. Fig. 3. Expression of TMEPAI in tumors. Paraffin-embedded sections of intestinal adenoma from $Apc^{Min/+}$ mice. The paraffin-embedded mouse tissues were sectioned to a 3 µm thickness, deparaffinized in xylene, rehydrated in graded ethanol solution, and immersed in citrate-NaOH buffer (10 mM sodium citrate, pH 7.2) for 20 min at 115°C to restore antigenicity. Then, the rehydrated sections were incubated

overnight at 4°C with mouse anti-TMEPAI monoclonal antibody (Abnova, 1:100), rabbit anti-phosphorylated Smad2 antibody (3), or mouse anti- β -catenin antibody (BD Transduction laboratories, 1:100). The sections incubated with the first antibodies were washed with PBS and subsequently colored using the Dako EnVision+system HRP (DAB) (DakoCytomation). Adenoma was stained for (i) β -catenin, (ii) TMEPAI and (iii) phosphorylated Smad2 antibodies using 3 consecutive sections. All sections were counterstained with hematoxylin. Lower panels show enlarged photos of the regions surrounded with squares (upper panels). The broken red and blue lines indicate the regions expressing β -catenin at low and high levels, respectively.

Suppl. Fig. 4. Expression of TMEPAI mRNA in cells transfected with

Smad4-specific siRNA, TCF7L2-specific siRNA or both combinations. After indicated siRNAs were transfected in MCF10A1 cells, cells were stimulated with TGF- β for 2 h. The expressions of TMEPAI, TCF7L2, Smad4 and β -actin were measured by semi-quantitative RT-PCR and normalized using the intensity of the band corresponding to β -actin. The level of induction was calculated relative to the value for control-siRNA-transfected cells in the absence of TGF- β . A primer set for human

Smad4 is 5'-CAAGGTGGAGAGAGAGTGAAAC-3' and

5'-GACGGGCATAGATCACATGA-3'. The other primer sets are described in the text.

Suppl. Fig. 5. Induction of TMEPAI mRNA upon Wnt-3a and/or TGF-β

stimulation. MDA-MB231 cells were stimulated with 200 ng/ml Wnt-3a (R&D systems) and/or TGF- β for 2 h. The expressions of TMEPAI and β -actin were measured by semi-quantitative RT-PCR and normalized using the intensity of the band corresponding to β -actin. The level of induction was calculated relative to the value for control-siRNA-transfected cells in the absence of TGF- β . The primer sets used here are described in the text.

Suppl. Fig. 6. Effect of TCF7L2 Δ (1-30) on TGF- β -induced (CAGA)₁₂-luc activity. HepG2 cells transfected with TCF7L2 Δ (1-30) were stimulated with TGF- β .

Suppl. Fig. 7. Effect of TCF7L2 on TGF-β-mediated pGL3ti-(mTTE)₃ activity.

HepG2 cells transfected with plasmids described were stimulated with TGF-β.

Suppl. Fig. 8. Interaction of Smad3 with TCF7L2 in COS7 cells. COS7 cells were transfected with indicated plasmids. Forty hours after transfection, cell lysates were immunoprecipitated with anti-Flag antibody, followed by immunoblot using anti-HA antibody (upper panel). The expressions of Flag-Smad3, HA-TCF7L2 and ALK5ca/V5 were evaluated using anti-Flag (2nd panel), anti-HA (3rd panel) and anti-V5 antibodies (lower panel), respectively.

Supplementary references

Horiguchi K., Shirakihara T., Nakano A., Imamura T., Miyazono K., and Saitoh M.
(2009) J. Biol. Chem. 284, 245-253.

Nakao A., Imamura T., Souchelnytskyi S., Kawabata M., Ishisaki A., Oeda E.,
Tamaki K., Hanai J., Heldin C.-H., Miyazono K., and ten Dijke P. (1997) *EMBO J.* 16, 5353-5362.

Supple	ementary	Fig. 1	(Nak	ano	et al)							
MOUSE HUMAN	GTGAGTGTGCC AC	C-TGTTC AC CC	CCC-CCGG	GACAGC GAGA	CCCGTGGG T A C	ATCCC GCTCGGA	CGGCCCGGGA TATGT G	CATCGGGATC – A CTG	GCGTGGGGGAC A C GT	TCGGGGGGCCG C CC T	CGCGCCTGCC CC T	100
MOUSE HUMAN	TCGCCCAGGCT CG A AA G	CCCCCG TCG	GTT CCCGG CA		CCCCGCCCC	CGGGGCGCGC C	CCTCCCGGAG	GCTCGCGGCA 	GCTGGCGGCC	GGCCCGGCTT	TGTCCCGCGG	200
MOUSE HUMAN	CGCTGCGAGCC	TGGCACG	GTCCCCGC C	CGCGCG T TC	CCCCCCC	CCGGCCCGAC C G	TCGGACCCGG	GGCTCGGCGG A	GGACGTCGCG G A	CCTCTTGGGA GG GC	GGGCCAGGGG TTG C	300
MOUSE HUMAN	AGCCGGGTCGG G G A C	GGAAGTT' T		GTTTTC	CCTAGGGG GA	CCGCGGCGAT A TC	GGAGCAATTA T	GGCTCT CGGC	TTATCAACTT	TGGGCGGGGG	AGCGGGCG TGGAG	400
MOUSE HUMAN	GGGGAGACACT T T	GTCTGGC T	CCGGGGAGG T	TGTCTG	GGGCTCCT	GGCGTGTGTC	TGGAGTGGCC TT	ATGGCGATGC GC C	GTCCCGGGTT I T C	CTGAGTGGAT	-TCCGTGCGT G	500
MOUSE HUMAN	ATGTAGAGTGC C G T	GCTAGTC GT G	IG CGTGGC	TCTGTC	TGAGTCTC G T	CGCGCGTCTT – C	TTGG—–TGTC C GG	TGTGGTTCAG G G T	AGTCGCGGTC	TGTGCCGGCC – CAA–	GAGTGCGTGT	600
MOUSE HUMAN	CCGAGTGTT C	CCTGCAT C	CTCA—GT TCT	GTGACT	GATTTG TTCCC TG	CTG TCCGGGC G	TGTGCTCGTG G CTT C	GCGGGGGT TT A C GT	Т ССАТСТТТС	GGGGATATGA G	TCTGGATCCA C G	700
MOUSE HUMAN	GCCAGATTTAA G C GG	GGACCGT (AGGTGT	CTGAATCC	AGGGCTCAGC	GCTGGCGCGT I C	CTAGCCCACC A G	GCGGATCCCC T TTG	AGTGTG ATGT	TGTCATTGTG	800
MOUSE HUMAN	AATGTCTGT CC G	`CCCG GTC	G-ACTCCT ACG A	ATAAAT	AGCCTCTG	TCTGGACTGC A	TTGGCTCACT T G	CTGGCTGGGA A	CGGTGGTTAC CA	AAATGAGTCA G	AAGTTTTGGG –	900
MOUSE HUMAN	GCTGTTTGTGT	T-GAGAC T G	CTC TG								1 1 1 1 1 1 1 1 1	

Supplementary Fig. 2 (Nakano et al)

Control siRNA

Smad2 siRNA

Supplementary Fig. 3 (Nakano et al)

β-catenin

TMEPAI

Phosphorylated Smad2

Scale=200 µm

Supplementary Fig. 4 (Nakano et al)

Supplementary Fig. 5 (Nakano et al)

Supplementary Fig. 6 (Nakano et al)

TCF7L2A(1-30)

Supplementary Fig. 7 (Nakano et al)

Supplementary Fig. 8 (Nakano et al)

