STRUCTURAL BASIS OF CARBOHYDRATE RECOGNITION BY CALRETICULIN

Guennadi Kozlov¹, Cosmin L. Pocanschi², Angelika Rosenauer¹, Sara Bastos-Aristizabal¹, Alexei Gorelik¹, David B. Williams², Kalle Gehring¹

From the ¹Department of Biochemistry, Groupe de recherche axé sur la structure des protéines, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, Canada H3G 0B1, and ²Departments of Biochemistry and Immunology, University of Toronto, Ontario, Toronto M5S 1A8, Canada

Suppl. Figure 1. Calreticulin lectin domain. (A) Schematic drawing of mouse calreticulin showing the signal peptide, two discontinuous segments of the lectin domain (N-and C-domains), P-domain and acidic C-terminus. (B) Schematic drawing and (C) amino acid sequence of the fragment crystallized. The N-, C- terminal extensions, C163S mutation, and five amino acid linker are indicated.

Suppl. Figure 2. Limited trypsin proteolysis of mouse calreticulin (CRT residues 18-416 with an N-terminal his-tag MGSSHHHHHHSSGRENLYFQGHM and a C163S mutation). (A) SDS-PAGE. Lanes from left to right are molecular weight markers and digests with trypsin at 1/500 for 3 min, 15 min, 30 min, 1 h, 2 h, and 3 h. CRT migrates anomalously at higher molecular weight than expected. (B) MALDI-TOF mass spectrum of the main CRT tryptic fragments. The major product was at 41518 m/z, which is close to the theoretical mass for a fragment starting after the arginine in the tag and ending at K368.

Suppl. Figure 3. NMR spectroscopy of C163S CRT (residues 18-206 and 301-416 with a GSGSG linker and N-terminal his-tag) before (A, B) and following tryptic digestion and partial purification (C, D). Left hand panels (A, C) are one-dimensional proton spectra. Right had panels (B, D) are two-dimensional ${}^{1}\text{H}{}^{15}\text{N}$ correlation spectra. Proteolysis was with 0.04 mg/ml trypsin for 3h, followed by size-exclusion chromatography on a Superdex 75 column (GE Healthcare).

Suppl. Figure 4. Calorimetric titration of the C163S CRT lectin domain with Glc_1Man_3 in the (A) absence and (B) presence of the reducing agent 10 mM TCEP (tris(2-carboxyethyl)phosphine). In each panel, the top graph shows the heat released following injections of Glc_1Man_3 into a cell containing CRT lectin domain. The bottom graph shows the integrated heat after correction for the heat of dilution and normalization of the amount of Glc_1Man_3 injected (squares). The curve represents the best fit to a model involving a single site. No binding could be detected in the presence of TCEP.

Suppl. Figure 5. Circular dichroism of the calreticulin lectin domain as a function of temperature. The C163S CRT lectin domain (0.4 mg/ml) in 20 mM HEPES, 150 mM NaCl, 1 mM CaCl₂, pH 7.5 was heated at 1 °C minute and the dichroism measured at 222 nm in a 2 mm cuvette. The melting temperature is 42 ± 1 °C.

Suppl. Figure 6. CRT and VIP36 use different structural elements to bind oligosaccharides. (A) CRT uses the surface of the concave β -sheet to bind carbohydrates (magenta, stick representation). A calcium ion (grey ball) is positioned on the opposite side of the protein and does not participate in sugar binding. (B) VIP36 utilizes loops off the concave β -sheet to engage oligomannose and calcium is required for efficient protein-carbohydrate interactions.