#### **Supporting Information**

# Unexpected Facile C<sub>carbene</sub>–X (X: I, Br, CI) Reductive Elimination From N-Heterocyclic Carbene Copper Halides Under Oxidative Conditions

Bo-Lin Lin, Peng Kang, and T. Daniel P. Stack \*

Department of Chemistry, Stanford University, Stanford, California 94305, USA

Section 1. General experimental information  $\cdots$  S2-S3 Section 2. X-ray crystal structures of  $2_{CI}$ ·SbF<sub>6</sub>·CH<sub>2</sub>Cl<sub>2</sub>,  $2_{Br}$ ·CF<sub>3</sub>SO<sub>3</sub>·CH<sub>2</sub>Cl<sub>2</sub>,  $2_{CI}$ ·SbF<sub>6</sub>·CH<sub>2</sub>Cl<sub>2</sub>, and IPrCu(CF<sub>3</sub>SO<sub>3</sub>)  $\cdots$  S4-S47 Section 3. Computational data  $\cdots$  S48-S74

General Information: All air and/or moisture sensitive compounds were manipulated in a glove box under a N<sub>2</sub> atmosphere. Dry acetonitrile was obtained by elution through a Innovative Technology solvent purification system. IPrCuCl, Cu(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>, [Cp<sub>2</sub>Fe]<sup>+</sup>PF<sub>6</sub><sup>-</sup> , [Ph<sub>2</sub>I]<sup>+</sup>PF<sub>6</sub>, NO<sup>+</sup>SbF<sub>6</sub>, and Selectfluor<sup>®</sup> were purchased from Sigma-Aldrich. IPrCuF, IPrCuBr, and IPrCuI were synthesized according to literature procedures.<sup>s1</sup> A modified literature procedure was used to prepare [(1, 10-phenanthroline)<sub>3</sub>Fe<sup>III</sup>]<sup>3+</sup> s<sup>2</sup> <sup>1</sup>H, <sup>13</sup>C, and <sup>19</sup>F NMR spectra were recorded at room temperature (RT) using a Varian Mercury 400 (<sup>1</sup>H, 400 MHz, <sup>13</sup>C, 125.9 MHz, and <sup>19</sup>F, 376.4 MHz) spectrometer. <sup>1</sup>H and <sup>13</sup>C NMR spectra were referenced to TMS using the residual proto- signal of the solvent. <sup>19</sup>F NMR spectra were referenced to CFCl<sub>3</sub>. Chemical shifts are reported using the standard  $\delta$  notation in parts per million, and coupling constant are reported in Hz. Multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), heptet (h). Cyclic voltammetry was performed using a BAS CV-50W voltammetric analyzer, a Ag wire reference electrode, a platinum disk working electrode, and a platinum wire counter electrode with 0.1 M Bu<sub>4</sub>NPF<sub>6</sub> solutions in acetonitrile (room temperature and ca. -40 °C) or propionitrile (room temperature and ca. -78 °C) with variable scan rates (50 to 1V/s). Ferrocene was used as an internal standard. Low-temperature UV-vis spectroscopy was performed using a Cary 50 spectrometer with a custom-designed immersible fiber-optic quartz probe with a variable path length (1 and 10 mm; Hellma, Inc.). Constant low temperatures were maintained by a dry ice/acetonitrile or dry ice/acetone bath. Solution temperatures were monitored directly by insertion of an Omega temperature probe in the solutions. The Notre Dame X-ray Crystallography Laboratory provided the X-ray analysis. Stanford University Mass Spectroscopy Laboratory provided the high-resolution mass spectroscopic analysis.

**Synthesis of 2**<sub>Cl</sub>·SbF<sub>6</sub>: NO<sup>+</sup>SbF<sub>6</sub><sup>-</sup> (18 mg, 0.68 mmol) and [Cu(CH<sub>3</sub>CN)<sub>4</sub>]<sup>+</sup>SbF<sub>6</sub><sup>-</sup> (36 mg, 0.078 mmol) were dissolved in MeCN (1 ml) and fully mixed at RT under N<sub>2</sub>. To the resultant blue solution was added IPrCuCl (15 mg, 0.031 mmol). The solution turns light blue immediately upon mixing. The solvent was removed under vacuum to give a solid residue, to which was added 5 ml deionized water and several drops of 1N aqueous ammonia. The mixture was extracted with 5 ml CH<sub>2</sub>Cl<sub>2</sub> (3x), and the solvent of the combined organic fractions was removed to give a white power, **2**<sub>Cl</sub>·SbF<sub>6</sub> (20 mg, 99% yield). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>): 1.25 (d, 6H, <sup>3</sup>J<sub>HH</sub> 6.8), 1.31 (d, 6H, <sup>3</sup>J<sub>HH</sub> 6.8), 2.34 (h, 2H, <sup>3</sup>J<sub>HH</sub> 6.8), 7.48 (d, 4H, <sup>3</sup>J<sub>HH</sub> 8.0), 7.72 (t, 2H, <sup>3</sup>J<sub>HH</sub> 8.0), 7.86 (s, 2H); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>): 23.46 24.07, 29.69, 125.70, 126.58, 128.42, 133.34, 134.80, 145.36; <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>): - 153.7. HRMS [**2**<sub>Cl</sub>]<sup>+</sup> found 423.2559, calculated 423.2567. Crystals suitable for X-ray structural analysis (**2**<sub>Cl</sub>·SbF<sub>6</sub>·CH<sub>2</sub>Cl<sub>2</sub>) were obtained by thermal diffusion of pentane into a **2**<sub>Cl</sub>·SbF<sub>6</sub>/CH<sub>2</sub>Cl<sub>2</sub> solution at RT.<sup>83</sup>

Synthesis of  $2_{Br}$ ·CF<sub>3</sub>SO<sub>3</sub>: Cu(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub> (29 mg, 0.08 mmol) and IPrCuBr (21 mg, 0.039 mmol) was dissolved in MeCN (1 ml) and fully mixed at RT under N<sub>2</sub>. A colorless solution was obtained immediately. The solvent was removed under vacuum to give a solid residue to which was added 5 ml deionized water and several drops of 1N aqueous ammonia. The mixture was extracted with 5 ml CH<sub>2</sub>Cl<sub>2</sub> (3x), and the solvent of the combined organic fractions were removed to give a white power,  $2_{Br}$ ·CF<sub>3</sub>SO<sub>3</sub> (24 mg,

98% yield). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>): 1.26 (d, 6H, <sup>3</sup>J<sub>HH</sub> 6.8), 1.29 (d, 6H, <sup>3</sup>J<sub>HH</sub> 6.8), 2.30 (h, 2H, <sup>3</sup>J<sub>HH</sub> 6.8), 7.46 (d, 4H, <sup>3</sup>J<sub>HH</sub> 8.0), 7.70 (t, 2H, <sup>3</sup>J<sub>HH</sub> 8.0), 8.13 (s, 2H); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>): 23.31, 24.27, 29.65, 125.28, 125.60, 128.45, 129.80, 133.11, 144.75, 145.24; <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>): -80.3. HRMS  $[2_{Br}]^+$  found 467.2046, calculated 467.2062. Crystals suitable for X-ray structural analysis ( $2_{Br}$ ·CF<sub>3</sub>SO<sub>3</sub>·CH<sub>2</sub>Cl<sub>2</sub>) were obtained by thermal diffusion of pentane into a  $2_{CI}$ ·SbF<sub>6</sub>/CH<sub>2</sub>Cl<sub>2</sub> solution at RT.<sup>s3</sup>

Synthesis of  $2_{I}$ ·I<sub>3</sub>: I<sub>2</sub> (104 mg, 0.409 mmol) and IPrCuCl (59 mg, 0.121 mmol) was dissolved in MeCN (1 ml) and fully mixed at RT in air. A brown solution was obtained immediately. Solvent removal under vacuum gave a solid residue to which were added 5 ml deionized water and several drops of 1N aqueous ammonia. The mixture was extracted with 5 ml CH<sub>2</sub>Cl<sub>2</sub> (3x), and the solvent of the combined organic fractions was removed to give a brown powder,  $2_{I}$ ·I<sub>3</sub> (108 mg, 99% yield). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>): 1.26 (d, 6H, <sup>3</sup>J<sub>HH</sub> 6.8), 1.32 (d, 6H, <sup>3</sup>J<sub>HH</sub> 6.8), 2.27 (h, 2H, <sup>3</sup>J<sub>HH</sub> 6.8), 7.46 (d, 4H, <sup>3</sup>J<sub>HH</sub> 8.0), 7.71 (t, 2H, <sup>3</sup>J<sub>HH</sub> 8.0), 7.79 (s, 2H); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>): 23.33, 24.79, 29.68, 113.07, 125.59, 127.71, 131.79, 132.93, 145.16. HRMS [ $2_{I}$ ]<sup>+</sup> found 515.1924, calculated 515.1923. Crystals suitable for X-ray structural analysis ( $2_{I}$ ·I<sub>3</sub>) were obtained by slow evaporation of a  $2_{I}$ ·I<sub>3</sub>/CH<sub>2</sub>Cl<sub>2</sub> solution at RT.

## General Procedure for Oxidations of IPrCuX (F, Cl, Br, and I) with Selectfluor<sup>®</sup> or Cu(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>:

IPrCuX (X = Cl, Br, and I) and an appropriate amount of oxidant were dissolved in CD<sub>3</sub>CN (0.75 ml) and fully mixed at RT under N<sub>2</sub>. <sup>1</sup>H NMR of the resulting  $2_X$  (X = Cl, Br, and I) indicated a quantitative formation if a sufficient amount of oxidant was used. Reactions run in air led to same yields of  $2_X$ .

IPrCu(CF<sub>3</sub>SO<sub>3</sub>) was quantitatively formed in reaction of IPrCuF with *ca.* 2 eq. Cu(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>. The <sup>1</sup>H NMR spectrum of IPrCu(CF<sub>3</sub>SO<sub>3</sub>) is consistent with literature data.<sup>s3</sup> Crystals suitable for X-ray structural analysis were obtained by thermal diffusion of pentane into a IPrCu(CF<sub>3</sub>SO<sub>3</sub>)/CH<sub>2</sub>Cl<sub>2</sub> solution at RT. It should be noted that an X-ray crystal structure of IPrCu(CF<sub>3</sub>SO<sub>3</sub>) has been reported.<sup>s3</sup>

#### **Reference:**

s1. (a) IPrCuF: Herron, J. R.; Ball, Z. T. *J. Am. Chem. Soc.* **2008**, *130*, 16486-16487. (b) IPrCuBr and IPrCuI: Liu, J. M.; Zhang, R. Z.; Wang, S. F.; Sun, W.; Xia, C. G. *Org. Lett.* **2009**, *11*, 1321-1324.

s2.  $[(1, 10\text{-phenanthroline})_3\text{Fe}^{III}]^{3+}$  was obtained by oxidation of  $[(1, 10\text{-phenanthroline})_3$  Fe<sup>II</sup>](OTf)<sub>2</sub> with NO<sup>+</sup>SbF<sub>6</sub> in MeCN. (Wong, C. L.; Kochi, J. K. J. Am. Chem. Soc. **1977**, *101*, 5593-5603.)

s3. During the preparation of this manuscript, a free carbene route for the synthesis of  $2_{CI}$  and  $2_{Br}$  was reported: Mendoza-Espinosa, D.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. **2010**, 132, 7264-7265.

s4. Goj, L. A.; Blue, E. D.; Delp, S. A.; Gunnoe, T. B.; Cundari, T. R.; Petersen, J. L. *Organometallics* **2006**, *25*, 4097-4104.

Figure S1. Crystal structure for  $2_{Cl}$ ·SbF<sub>6</sub>·CH<sub>2</sub>Cl<sub>2</sub>.



Table S1. Crystal data and structure refinement for  $2_{Cl}$ ·SbF<sub>6</sub>·CH<sub>2</sub>Cl<sub>2</sub>.

| Empirical formula                        | $C_{28}H_{38}Cl_3F_6N_2Sb$                                |
|------------------------------------------|-----------------------------------------------------------|
| Formula weight                           | 744.70                                                    |
| Temperature                              | 100(2) K                                                  |
| Wavelength                               | 1.54178 Å                                                 |
| Crystal system                           | triclinic                                                 |
| Space group                              | P-1                                                       |
| Unit cell dimensions                     | $a = 10.37220(10)$ Å $\alpha = 77.6800(10)^{\circ}$       |
|                                          | $b = 11.18180(10)$ Å $\beta = 75.8820(10)^{\circ}$        |
|                                          | $c = 16.0498(2) \text{ Å}$ $\gamma = 66.3380(10)^{\circ}$ |
| Volume                                   | $1639.43(3) \text{ Å}^{3}$                                |
| Ζ                                        | 2                                                         |
| Density (calculated)                     | 1.509 g.cm <sup>-3</sup>                                  |
| Absorption coefficient $(\mu)$           | 9.405 mm <sup>-1</sup>                                    |
| F(000)                                   | 752                                                       |
| Crystal size                             | $0.44 \times 0.12 \times 0.07 \text{ mm}^3$               |
| $\theta$ range for data collection       | 2.86 to 69.73°                                            |
| Index ranges                             | $-12 \le h \le 12, -13 \le k \le 13, -19 \le l \le 19$    |
| Reflections collected                    | 16090                                                     |
| Independent reflections                  | 5778 $[R_{int} = 0.0200]$                                 |
| Completeness to $\theta = 69.73^{\circ}$ | 93.3 %                                                    |
| Absorption correction                    | Numerical                                                 |
| Max. and min. transmission               | 0.6520 and 0.2308                                         |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>               |
| Data / restraints / parameters           | 5778 / 0 / 368                                            |
| Goodness-of-fit on $F^2$                 | 1.032                                                     |
| Final R indices $[I \ge 2\sigma(I)]$     | $R_1 = 0.0290, wR_2 = 0.0720$                             |
| R indices (all data)                     | $R_1 = 0.0308, wR_2 = 0.0733$                             |
| Largest diff. peak and hole              | 0.951 and -0.630 e <sup>-</sup> .Å <sup>-3</sup>          |

Table S2. Atomic coordinates and equivalent isotropic displacement parameters (Å<sup>2</sup>) for  $2_{CI}$ ·SbF<sub>6</sub>·CH<sub>2</sub>Cl<sub>2</sub>. U(eq) is defined as one third of the trace of the orthogonalized U<sub>ij</sub> tensor.

|        | Х            | У           | Z            | U(eq)    |
|--------|--------------|-------------|--------------|----------|
| Cl(1)  | 0.64690(8)   | 0.08164(6)  | 0.28934(4)   | 0.028(1) |
| N(1)   | 0.5062(2)    | 0.3170(2)   | 0.20714(13)  | 0.018(1) |
| N(2)   | 0.5032(2)    | 0.3191(2)   | 0.34284(13)  | 0.015(1) |
| C(1)   | 0.5486(3)    | 0.2430(3)   | 0.27989(16)  | 0.016(1) |
| C(2)   | 0.4330(3)    | 0.4457(3)   | 0.22443(17)  | 0.021(1) |
| C(3)   | 0.4313(3)    | 0.4473(3)   | 0.30841(17)  | 0.020(1) |
| C(4)   | 0.5223(3)    | 0.2677(3)   | 0.12686(16)  | 0.020(1) |
| C(5)   | 0.6396(3)    | 0.2684(3)   | 0.06194(17)  | 0.024(1) |
| C(6)   | 0.6474(3)    | 0.2252(3)   | -0.01507(18) | 0.030(1) |
| C(7)   | 0.5450(4)    | 0.1839(3)   | -0.02569(19) | 0.034(1) |
| C(8)   | 0.4307(4)    | 0.1829(3)   | 0.04075(19)  | 0.031(1) |
| C(9)   | 0.4167(3)    | 0.2250(3)   | 0.11909(17)  | 0.025(1) |
| C(10)  | 0.7547(3)    | 0.3125(3)   | 0.07291(18)  | 0.029(1) |
| C(11)  | 0.9025(4)    | 0.2039(4)   | 0.0565(3)    | 0.049(1) |
| C(12)  | 0.7525(4)    | 0.4375(3)   | 0.0113(2)    | 0.038(1) |
| C(13)  | 0.2908(3)    | 0.2230(3)   | 0.19184(18)  | 0.028(1) |
| C(14)  | 0.1510(4)    | 0.3301(4)   | 0.1709(3)    | 0.053(1) |
| C(15)  | 0.2780(5)    | 0.0888(4)   | 0.2111(3)    | 0.058(1) |
| C(16)  | 0.5137(3)    | 0.2754(2)   | 0.43410(15)  | 0.015(1) |
| C(17)  | 0.4044(3)    | 0.2368(3)   | 0.48747(16)  | 0.017(1) |
| C(18)  | 0.4100(3)    | 0.2067(3)   | 0.57569(16)  | 0.019(1) |
| C(19)  | 0.5197(3)    | 0.2122(3)   | 0.60757(16)  | 0.021(1) |
| C(20)  | 0.6282(3)    | 0.2464(3)   | 0.55213(17)  | 0.021(1) |
| C(21)  | 0.6277(3)    | 0.2799(3)   | 0.46338(16)  | 0.017(1) |
| C(22)  | 0.2846(3)    | 0.2292(3)   | 0.45224(17)  | 0.021(1) |
| C(23)  | 0.1473(3)    | 0.3494(3)   | 0.4694(2)    | 0.032(1) |
| C(24)  | 0.2582(3)    | 0.1015(3)   | 0.48910(19)  | 0.025(1) |
| C(25)  | 0.7476(3)    | 0.3168(3)   | 0.40290(17)  | 0.021(1) |
| C(26)  | 0.8909(3)    | 0.2012(3)   | 0.4065(2)    | 0.035(1) |
| C(27)  | 0.7544(3)    | 0.4389(3)   | 0.4271(2)    | 0.028(1) |
| Sb(1)  | 0.09533(2)   | 0.79200(2)  | 0.26912(1)   | 0.019(1) |
| F(1)   | -0.10206(17) | 0.82442(18) | 0.29669(11)  | 0.032(1) |
| F(2)   | 0.29395(17)  | 0.75286(17) | 0.24144(11)  | 0.029(1) |
| F(3)   | 0.12711(19)  | 0.66052(18) | 0.36407(11)  | 0.033(1) |
| F(4)   | 0.1196(2)    | 0.6672(2)   | 0.19918(12)  | 0.038(1) |
| F(5)   | 0.0687(2)    | 0.9219(2)   | 0.17394(12)  | 0.049(1) |
| F(6)   | 0.0731(2)    | 0.91385(19) | 0.34027(13)  | 0.041(1) |
| C(28)  | 0.8069(9)    | 0.6876(8)   | 0.1822(6)    | 0.045(2) |
| C(28A) | 0.8176(8)    | 0.7023(8)   | 0.1417(6)    | 0.044(2) |
| Cl(2)  | 0.71952(13)  | 0.86183(11) | 0.13248(7)   | 0.062(1) |

| Cl(3)  | 0.70250(14) | 0.60329(12) | 0.19787(7) | 0.064(1) |
|--------|-------------|-------------|------------|----------|
| H(2Å)  | 0.3915      | 0.5195      | 0.1844     | 0.025    |
| H(3A)  | 0.3887      | 0.5223      | 0.3384     | 0.023    |
| H(6A)  | 0.7251      | 0.2242      | -0.0611    | 0.036    |
| H(7A)  | 0.5524      | 0.1557      | -0.0790    | 0.040    |
| H(8A)  | 0.3614      | 0.1531      | 0.0326     | 0.037    |
| H(10Å) | 0.7350      | 0.3318      | 0.1338     | 0.034    |
| H(11A) | 0.9031      | 0.1236      | 0.0959     | 0.073    |
| H(11B) | 0.9746      | 0.2324      | 0.0667     | 0.073    |
| H(11C) | 0.9247      | 0.1860      | -0.0036    | 0.073    |
| H(12A) | 0.6576      | 0.5067      | 0.0221     | 0.057    |
| H(12B) | 0.7739      | 0.4194      | -0.0487    | 0.057    |
| H(12C) | 0.8245      | 0.4666      | 0.0208     | 0.057    |
| H(13A) | 0.3093      | 0.2410      | 0.2453     | 0.034    |
| H(14A) | 0.0725      | 0.3257      | 0.2184     | 0.079    |
| H(14B) | 0.1324      | 0.3170      | 0.1171     | 0.079    |
| H(14C) | 0.1583      | 0.4166      | 0.1636     | 0.079    |
| H(15A) | 0.2048      | 0.0869      | 0.2627     | 0.087    |
| H(15B) | 0.3701      | 0.0207      | 0.2215     | 0.087    |
| H(15C) | 0.2507      | 0.0723      | 0.1616     | 0.087    |
| H(18A) | 0.3371      | 0.1819      | 0.6146     | 0.023    |
| H(19A) | 0.5206      | 0.1924      | 0.6681     | 0.025    |
| H(20A) | 0.7042      | 0.2471      | 0.5749     | 0.025    |
| H(22A) | 0.3147      | 0.2303      | 0.3880     | 0.025    |
| H(23A) | 0.1648      | 0.4296      | 0.4410     | 0.047    |
| H(23B) | 0.1174      | 0.3528      | 0.5319     | 0.047    |
| H(23C) | 0.0717      | 0.3428      | 0.4461     | 0.047    |
| H(24A) | 0.3493      | 0.0265      | 0.4830     | 0.037    |
| H(24B) | 0.1936      | 0.0926      | 0.4574     | 0.037    |
| H(24C) | 0.2148      | 0.1037      | 0.5505     | 0.037    |
| H(25A) | 0.7284      | 0.3368      | 0.3424     | 0.025    |
| H(26A) | 0.8845      | 0.1229      | 0.3924     | 0.053    |
| H(26B) | 0.9132      | 0.1831      | 0.4649     | 0.053    |
| H(26C) | 0.9666      | 0.2237      | 0.3646     | 0.053    |
| H(27A) | 0.6613      | 0.5112      | 0.4266     | 0.041    |
| H(27B) | 0.8277      | 0.4648      | 0.3850     | 0.041    |
| H(27C) | 0.7786      | 0.4190      | 0.4851     | 0.041    |
| H(28A) | 0.8975      | 0.6441      | 0.1437     | 0.054    |
| H(28B) | 0.8303      | 0.6880      | 0.2384     | 0.054    |
| H(28C) | 0.8933      | 0.6839      | 0.1753     | 0.053    |
| H(28D) | 0.8644      | 0.6757      | 0.0834     | 0.053    |
|        |             |             |            |          |

Table S3. Anisotropic displacement parameters (Å<sup>2</sup>) for  $2_{CI}$ ·SbF<sub>6</sub>·CH<sub>2</sub>Cl<sub>2</sub>. The anisotropic displacement factor exponent takes the form: - $2\pi^2$ [h<sup>2</sup> a\*<sup>2</sup>U<sub>11</sub> + ... + 2hka\*b\*U<sub>12</sub>]

|       | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Cl(1) | 0.0469(4)       | 0.0141(3)       | 0.0188(3)       | -0.0028(2)      | -0.0096(3)      | -0.0030(3)      |
| N(1)  | 0.0218(12)      | 0.0179(11)      | 0.0142(10)      | -0.0013(8)      | -0.0039(8)      | -0.0076(10)     |
| N(2)  | 0.0172(11)      | 0.0153(10)      | 0.0132(10)      | -0.0019(8)      | -0.0030(8)      | -0.0064(9)      |
| C(1)  | 0.0189(13)      | 0.0154(13)      | 0.0146(12)      | -0.0010(9)      | -0.0034(9)      | -0.0065(11)     |
| C(2)  | 0.0223(14)      | 0.0159(13)      | 0.0203(13)      | -0.0006(10)     | -0.0048(10)     | -0.0033(12)     |
| C(3)  | 0.0209(14)      | 0.0140(12)      | 0.0200(13)      | -0.0026(10)     | -0.0039(10)     | -0.0025(12)     |
| C(4)  | 0.0285(15)      | 0.0187(13)      | 0.0119(12)      | -0.0015(10)     | -0.0059(10)     | -0.0082(12)     |
| C(5)  | 0.0293(16)      | 0.0251(15)      | 0.0164(13)      | 0.0006(11)      | -0.0058(11)     | -0.0093(13)     |
| C(6)  | 0.0337(17)      | 0.0360(17)      | 0.0166(13)      | -0.0045(12)     | -0.0008(11)     | -0.0101(15)     |
| C(7)  | 0.048(2)        | 0.0397(18)      | 0.0185(14)      | -0.0090(13)     | -0.0070(13)     | -0.0177(17)     |
| C(8)  | 0.0440(19)      | 0.0366(18)      | 0.0217(14)      | -0.0039(12)     | -0.0098(13)     | -0.0215(16)     |
| C(9)  | 0.0323(16)      | 0.0271(15)      | 0.0172(13)      | 0.0003(11)      | -0.0069(11)     | -0.0140(14)     |
| C(10) | 0.0302(16)      | 0.0375(18)      | 0.0203(14)      | -0.0028(12)     | -0.0025(11)     | -0.0164(15)     |
| C(11) | 0.0277(19)      | 0.046(2)        | 0.071(3)        | -0.0069(19)     | -0.0171(17)     | -0.0077(18)     |
| C(12) | 0.053(2)        | 0.0406(19)      | 0.0287(16)      | -0.0009(14)     | -0.0060(14)     | -0.0274(18)     |
| C(13) | 0.0340(17)      | 0.0386(18)      | 0.0199(14)      | -0.0026(12)     | -0.0041(12)     | -0.0222(15)     |
| C(14) | 0.038(2)        | 0.054(2)        | 0.053(2)        | 0.0040(19)      | 0.0056(17)      | -0.017(2)       |
| C(15) | 0.062(3)        | 0.038(2)        | 0.061(3)        | 0.0034(18)      | 0.015(2)        | -0.024(2)       |
| C(16) | 0.0190(13)      | 0.0135(12)      | 0.0124(11)      | -0.0027(9)      | -0.0035(9)      | -0.0038(11)     |
| C(17) | 0.0163(13)      | 0.0141(12)      | 0.0178(12)      | -0.0030(10)     | -0.0028(10)     | -0.0023(11)     |
| C(18) | 0.0210(14)      | 0.0169(13)      | 0.0169(12)      | -0.0016(10)     | -0.0007(10)     | -0.0055(12)     |
| C(19) | 0.0273(15)      | 0.0188(13)      | 0.0120(12)      | -0.0030(10)     | -0.0060(10)     | -0.0030(12)     |
| C(20) | 0.0217(14)      | 0.0195(13)      | 0.0210(13)      | -0.0059(10)     | -0.0068(10)     | -0.0038(12)     |
| C(21) | 0.0182(13)      | 0.0148(12)      | 0.0187(12)      | -0.0060(10)     | -0.0038(10)     | -0.0039(11)     |
| C(22) | 0.0208(14)      | 0.0256(15)      | 0.0181(12)      | 0.0008(10)      | -0.0049(10)     | -0.0120(13)     |
| C(23) | 0.0225(15)      | 0.0214(15)      | 0.053(2)        | 0.0007(13)      | -0.0153(13)     | -0.0079(13)     |
| C(24) | 0.0228(15)      | 0.0193(14)      | 0.0333(15)      | -0.0062(11)     | -0.0072(12)     | -0.0059(13)     |
| C(25) | 0.0204(14)      | 0.0255(15)      | 0.0217(13)      | -0.0038(11)     | -0.0048(10)     | -0.0115(13)     |
| C(26) | 0.0182(15)      | 0.0234(16)      | 0.054(2)        | -0.0101(14)     | 0.0112(13)      | -0.0053(14)     |
| C(27) | 0.0263(16)      | 0.0242(15)      | 0.0341(16)      | -0.0044(12)     | -0.0048(12)     | -0.0109(14)     |
| Sb(1) | 0.0195(1)       | 0.0185(1)       | 0.0146(1)       | -0.0014(1)      | -0.0020(1)      | -0.0022(1)      |
| F(1)  | 0.0171(8)       | 0.0404(10)      | 0.0300(9)       | -0.0084(8)      | -0.0022(7)      | -0.0023(8)      |
| F(2)  | 0.0195(8)       | 0.0328(10)      | 0.0327(9)       | -0.0054(7)      | -0.0001(7)      | -0.0082(8)      |
| F(3)  | 0.0328(10)      | 0.0307(10)      | 0.0241(8)       | 0.0110(7)       | -0.0047(7)      | -0.0072(8)      |
| F(4)  | 0.0327(10)      | 0.0483(12)      | 0.0384(10)      | -0.0281(9)      | -0.0047(8)      | -0.0088(9)      |
| F(5)  | 0.0474(12)      | 0.0439(12)      | 0.0312(10)      | 0.0209(9)       | -0.0065(9)      | -0.0048(10)     |
| F(6)  | 0.0423(12)      | 0.0317(10)      | 0.0503(12)      | -0.0258(9)      | -0.0008(9)      | -0.0084(9)      |
| Cl(2) | 0.0749(7)       | 0.0539(6)       | 0.0727(7)       | -0.0243(5)      | -0.0362(6)      | -0.0178(6)      |
| Cl(3) | 0.0816(8)       | 0.0713(7)       | 0.0452(5)       | -0.0086(5)      | -0.0083(5)      | -0.0356(6)      |

| atom-atom     | distance   | atom-atom     | distance   |
|---------------|------------|---------------|------------|
| Cl(1)-C(1)    | 1.673(3)   | N(1)-C(1)     | 1.337(3)   |
| N(1)-C(2)     | 1.383(3)   | N(1)-C(4)     | 1.455(3)   |
| N(2)-C(1)     | 1.335(3)   | N(2)-C(3)     | 1.386(3)   |
| N(2)-C(16)    | 1.458(3)   | C(2)-C(3)     | 1.347(4)   |
| C(4)-C(5)     | 1.397(4)   | C(4)-C(9)     | 1.398(4)   |
| C(5)-C(6)     | 1.394(4)   | C(5)-C(10)    | 1.520(4)   |
| C(6)-C(7)     | 1.373(5)   | C(7)-C(8)     | 1.389(4)   |
| C(8)-C(9)     | 1.390(4)   | C(9)-C(13)    | 1.529(4)   |
| C(10)-C(12)   | 1.526(4)   | C(10)-C(11)   | 1.530(5)   |
| C(13)-C(15)   | 1.518(5)   | C(13)-C(14)   | 1.524(5)   |
| C(16)-C(21)   | 1.397(4)   | C(16)-C(17)   | 1.402(4)   |
| C(17)-C(18)   | 1.394(4)   | C(17)-C(22)   | 1.523(3)   |
| C(18)-C(19)   | 1.384(4)   | C(19)-C(20)   | 1.384(4)   |
| C(20)-C(21)   | 1.394(4)   | C(21)-C(25)   | 1.520(4)   |
| C(22)-C(24)   | 1.528(4)   | C(22)-C(23)   | 1.530(4)   |
| C(25)-C(27)   | 1.529(4)   | C(25)-C(26)   | 1.533(4)   |
| Sb(1)-F(5)    | 1.8590(18) | Sb(1)-F(3)    | 1.8689(16) |
| Sb(1)-F(6)    | 1.8701(17) | Sb(1)-F(4)    | 1.8757(17) |
| Sb(1)-F(2)    | 1.8830(16) | Sb(1)-F(1)    | 1.8840(16) |
| C(28)-Cl(3)   | 1.646(8)   | C(28)-Cl(2)   | 1.878(8)   |
| C(28A)-Cl(2)  | 1.656(8)   | C(28A)-Cl(3)  | 1.890(8)   |
| C(2)-H(2A)    | 0.9500     | C(3)-H(3A)    | 0.9500     |
| C(6)-H(6A)    | 0.9500     | C(7)-H(7A)    | 0.9500     |
| C(8)-H(8A)    | 0.9500     | C(10)-H(10A)  | 1.0000     |
| C(11)-H(11A)  | 0.9800     | C(11)-H(11B)  | 0.9800     |
| C(11)-H(11C)  | 0.9800     | C(12)-H(12A)  | 0.9800     |
| C(12)-H(12B)  | 0.9800     | C(12)-H(12C)  | 0.9800     |
| C(13)-H(13A)  | 1.0000     | C(14)-H(14A)  | 0.9800     |
| C(14)-H(14B)  | 0.9800     | C(14)-H(14C)  | 0.9800     |
| C(15)-H(15A)  | 0.9800     | C(15)-H(15B)  | 0.9800     |
| C(15)-H(15C)  | 0.9800     | C(18)-H(18A)  | 0.9500     |
| C(19)-H(19A)  | 0.9500     | C(20)-H(20A)  | 0.9500     |
| C(22)-H(22A)  | 1.0000     | C(23)-H(23A)  | 0.9800     |
| C(23)-H(23B)  | 0.9800     | C(23)-H(23C)  | 0.9800     |
| C(24)-H(24A)  | 0.9800     | C(24)-H(24B)  | 0.9800     |
| C(24)-H(24C)  | 0.9800     | C(25)-H(25A)  | 1.0000     |
| C(26)-H(26A)  | 0.9800     | C(26)-H(26B)  | 0.9800     |
| C(26)-H(26C)  | 0.9800     | C(27)-H(27A)  | 0.9800     |
| C(27)-H(27B)  | 0.9800     | C(27)-H(27C)  | 0.9800     |
| C(28)-H(28A)  | 0.9900     | C(28)-H(28B)  | 0.9900     |
| C(28A)-H(28C) | 0.9900     | C(28A)-H(28D) | 0.9900     |

## Table S4. Bond lengths [Å] for $2_{Cl}$ ·SbF<sub>6</sub>·CH<sub>2</sub>Cl<sub>2</sub>.

| atom-atom-atom     | angle     | atom-atom-atom      | angle     |
|--------------------|-----------|---------------------|-----------|
| C(1)-N(1)-C(2)     | 108.0(2)  | C(1)-N(1)-C(4)      | 125.4(2)  |
| C(2)-N(1)-C(4)     | 126.3(2)  | C(1)-N(2)-C(3)      | 108.1(2)  |
| C(1)-N(2)-C(16)    | 126.6(2)  | C(3)-N(2)-C(16)     | 125.0(2)  |
| N(2)-C(1)-N(1)     | 109.0(2)  | N(2)-C(1)-Cl(1)     | 125.6(2)  |
| N(1)-C(1)-Cl(1)    | 125.3(2)  | C(3)-C(2)-N(1)      | 107.5(2)  |
| C(2)-C(3)-N(2)     | 107.3(2)  | C(5)-C(4)-C(9)      | 124.1(2)  |
| C(5)-C(4)-N(1)     | 118.5(2)  | C(9)-C(4)-N(1)      | 117.4(2)  |
| C(6)-C(5)-C(4)     | 116.4(3)  | C(6)-C(5)-C(10)     | 120.6(3)  |
| C(4)-C(5)-C(10)    | 123.0(2)  | C(7)-C(6)-C(5)      | 121.3(3)  |
| C(6)-C(7)-C(8)     | 120.7(3)  | C(7)-C(8)-C(9)      | 120.7(3)  |
| C(8)-C(9)-C(4)     | 116.7(3)  | C(8)-C(9)-C(13)     | 120.2(3)  |
| C(4)-C(9)-C(13)    | 123.0(2)  | C(5)-C(10)-C(12)    | 110.5(3)  |
| C(5)-C(10)-C(11)   | 110.7(3)  | C(12)-C(10)-C(11)   | 109.8(3)  |
| C(15)-C(13)-C(14)  | 110.5(3)  | C(15)-C(13)-C(9)    | 111.3(3)  |
| C(14)-C(13)-C(9)   | 111.5(3)  | C(21)-C(16)-C(17)   | 124.3(2)  |
| C(21)-C(16)-N(2)   | 118.3(2)  | C(17)-C(16)-N(2)    | 117.3(2)  |
| C(18)-C(17)-C(16)  | 116.3(2)  | C(18)-C(17)-C(22)   | 121.2(2)  |
| C(16)-C(17)-C(22)  | 122.5(2)  | C(19)-C(18)-C(17)   | 121.2(2)  |
| C(18)-C(19)-C(20)  | 120.6(2)  | C(19)-C(20)-C(21)   | 121.1(2)  |
| C(20)-C(21)-C(16)  | 116.5(2)  | C(20)-C(21)-C(25)   | 120.7(2)  |
| C(16)-C(21)-C(25)  | 122.8(2)  | C(17)-C(22)-C(24)   | 111.9(2)  |
| C(17)-C(22)-C(23)  | 110.7(2)  | C(24)-C(22)-C(23)   | 111.0(2)  |
| C(21)-C(25)-C(27)  | 110.7(2)  | C(21)-C(25)-C(26)   | 110.0(2)  |
| C(27)-C(25)-C(26)  | 110.2(2)  | F(5)-Sb(1)-F(3)     | 178.53(8) |
| F(5)-Sb(1)-F(6)    | 91.13(10) | F(3)-Sb(1)-F(6)     | 88.87(9)  |
| F(5)-Sb(1)-F(4)    | 89.85(10) | F(3)-Sb(1)-F(4)     | 90.13(9)  |
| F(6)-Sb(1)-F(4)    | 178.91(9) | F(5)-Sb(1)-F(2)     | 90.15(9)  |
| F(3)-Sb(1)-F(2)    | 88.38(8)  | F(6)-Sb(1)-F(2)     | 90.78(8)  |
| F(4)-Sb(1)-F(2)    | 88.76(8)  | F(5)-Sb(1)-F(1)     | 91.08(9)  |
| F(3)-Sb(1)-F(1)    | 90.39(8)  | F(6)-Sb(1)-F(1)     | 90.98(8)  |
| F(4)-Sb(1)-F(1)    | 89.45(8)  | F(2)-Sb(1)-F(1)     | 177.83(8) |
| Cl(3)-C(28)-Cl(2)  | 111.6(4)  | Cl(2)-C(28A)-Cl(3)  | 110.6(4)  |
| C(28A)-Cl(2)-C(28) | 19.2(3)   | C(28)-Cl(3)-C(28A)  | 18.9(3)   |
| C(3)-C(2)-H(2A)    | 126.2     | N(1)-C(2)-H(2A)     | 126.2     |
| C(2)-C(3)-H(3A)    | 126.4     | N(2)-C(3)-H(3A)     | 126.4     |
| C(7)-C(6)-H(6A)    | 119.3     | C(5)-C(6)-H(6A)     | 119.3     |
| C(6)-C(7)-H(7A)    | 119.6     | C(8)-C(7)-H(7A)     | 119.6     |
| C(7)-C(8)-H(8A)    | 119.6     | C(9)-C(8)-H(8A)     | 119.6     |
| C(5)-C(10)-H(10A)  | 108.6     | C(12)-C(10)-H(10A)  | 108.6     |
| С(11)-С(10)-Н(10А) | 108.6     | C(10)-C(11)-H(11A)  | 109.5     |
| C(10)-C(11)-H(11B) | 109.5     | H(11A)-C(11)-H(11B) | 109.5     |
| С(10)-С(11)-Н(11С) | 109.5     | H(11A)-C(11)-H(11C) | 109.5     |

#### Table S5. Bond angles [°] for $2_{Cl}$ ·SbF<sub>6</sub>·CH<sub>2</sub>Cl<sub>2</sub>.

| H(11B)-C(11)-H(11C) | 109.5 | C(10)-C(12)-H(12A)   | 109.5 |
|---------------------|-------|----------------------|-------|
| C(10)-C(12)-H(12B)  | 109.5 | H(12A)-C(12)-H(12B)  | 109.5 |
| C(10)-C(12)-H(12C)  | 109.5 | H(12A)-C(12)-H(12C)  | 109.5 |
| H(12B)-C(12)-H(12C) | 109.5 | C(15)-C(13)-H(13A)   | 107.8 |
| C(14)-C(13)-H(13A)  | 107.8 | C(9)-C(13)-H(13A)    | 107.8 |
| C(13)-C(14)-H(14A)  | 109.5 | C(13)-C(14)-H(14B)   | 109.5 |
| H(14A)-C(14)-H(14B) | 109.5 | C(13)-C(14)-H(14C)   | 109.5 |
| H(14A)-C(14)-H(14C) | 109.5 | H(14B)-C(14)-H(14C)  | 109.5 |
| C(13)-C(15)-H(15A)  | 109.5 | C(13)-C(15)-H(15B)   | 109.5 |
| H(15A)-C(15)-H(15B) | 109.5 | C(13)-C(15)-H(15C)   | 109.5 |
| H(15A)-C(15)-H(15C) | 109.5 | H(15B)-C(15)-H(15C)  | 109.5 |
| C(19)-C(18)-H(18A)  | 119.4 | C(17)-C(18)-H(18A)   | 119.4 |
| C(18)-C(19)-H(19A)  | 119.7 | C(20)-C(19)-H(19A)   | 119.7 |
| C(19)-C(20)-H(20A)  | 119.5 | C(21)-C(20)-H(20A)   | 119.5 |
| C(17)-C(22)-H(22A)  | 107.7 | C(24)-C(22)-H(22A)   | 107.7 |
| C(23)-C(22)-H(22A)  | 107.7 | C(22)-C(23)-H(23A)   | 109.5 |
| C(22)-C(23)-H(23B)  | 109.5 | H(23A)-C(23)-H(23B)  | 109.5 |
| С(22)-С(23)-Н(23С)  | 109.5 | H(23A)-C(23)-H(23C)  | 109.5 |
| H(23B)-C(23)-H(23C) | 109.5 | C(22)-C(24)-H(24A)   | 109.5 |
| C(22)-C(24)-H(24B)  | 109.5 | H(24A)-C(24)-H(24B)  | 109.5 |
| C(22)-C(24)-H(24C)  | 109.5 | H(24A)-C(24)-H(24C)  | 109.5 |
| H(24B)-C(24)-H(24C) | 109.5 | C(21)-C(25)-H(25A)   | 108.6 |
| C(27)-C(25)-H(25A)  | 108.6 | C(26)-C(25)-H(25A)   | 108.6 |
| C(25)-C(26)-H(26A)  | 109.5 | C(25)-C(26)-H(26B)   | 109.5 |
| H(26A)-C(26)-H(26B) | 109.5 | C(25)-C(26)-H(26C)   | 109.5 |
| H(26A)-C(26)-H(26C) | 109.5 | H(26B)-C(26)-H(26C)  | 109.5 |
| C(25)-C(27)-H(27A)  | 109.5 | C(25)-C(27)-H(27B)   | 109.5 |
| H(27A)-C(27)-H(27B) | 109.5 | C(25)-C(27)-H(27C)   | 109.5 |
| H(27A)-C(27)-H(27C) | 109.5 | H(27B)-C(27)-H(27C)  | 109.5 |
| Cl(3)-C(28)-H(28A)  | 109.3 | Cl(2)-C(28)-H(28A)   | 109.3 |
| Cl(3)-C(28)-H(28B)  | 109.3 | Cl(2)-C(28)-H(28B)   | 109.3 |
| H(28A)-C(28)-H(28B) | 108.0 | Cl(2)-C(28A)-H(28C)  | 109.5 |
| Cl(3)-C(28A)-H(28C) | 109.5 | Cl(2)-C(28A)-H(28D)  | 109.5 |
| Cl(3)-C(28A)-H(28D) | 109.5 | H(28C)-C(28A)-H(28D) | 108.1 |

| atom-atom-atom-atom | angle               | atom-atom-atom-atom  | angle     |
|---------------------|---------------------|----------------------|-----------|
| C(3)-N(2)-C(1)-N(1) | -1.1(3)             | C(16)-N(2)-C(1)-N(1) | 173.3(2)  |
|                     | C(3)-N(2)           | -C(1)-Cl(1)          | 177.2(2)  |
|                     | C(16)-N(2)          | -C(1)-Cl(1)          | -8.4(4)   |
|                     | $\tilde{C}(2)-N(1)$ | -C(1)-N(2)           | 1.0(3)    |
|                     | C(4)-N(1)           | -C(1)-N(2)           | -173.4(2) |
|                     | C(2)-N(1)           | -C(1)-Cl(1)          | -177.3(2) |
|                     | C(4)-N(1)           | -C(1)-Cl(1)          | 8.3(4)    |
|                     | C(1)-N(1)           | -C(2)-C(3)           | -0.5(3)   |
|                     | C(4)-N(1)           | -C(2)-C(3)           | 173.8(2)  |
|                     | N(1)-C(2)-          | -C(3)-N(2)           | -0.2(3)   |
|                     | C(1)-N(2)           | -C(3)-C(2)           | 0.8(3)    |
|                     | C(16)-N(2)          | -C(3)-C(2)           | -173.7(2) |
|                     | C(1)-N(1)           | -C(4)-C(5)           | -96.6(3)  |
|                     | C(2)-N(1)           | -C(4)-C(5)           | 90.0(3)   |
|                     | C(1)-N(1)           | -C(4)-C(9)           | 84.7(3)   |
|                     | C(2)-N(1)           | -C(4)-C(9)           | -88.6(3)  |
|                     | C(9)-C(4)           | -C(5)-C(6)           | 1.0(4)    |
|                     | N(1)-C(4)           | -C(5)-C(6)           | -177.5(3) |
|                     | C(9)-C(4)           | -C(5)-C(10)          | -178.6(3) |
|                     | N(1)-C(4)           | -C(5)-C(10)          | 2.9(4)    |
|                     | C(4)-C(5)           | -C(6)-C(7)           | -0.2(5)   |
|                     | C(10)-C(5)          | -C(6)-C(7)           | 179.4(3)  |
|                     | C(5)-C(6)           | -C(7)-C(8)           | -0.6(5)   |
|                     | C(6)-C(7)-          | -C(8)-C(9)           | 0.7(5)    |
|                     | C(7)-C(8)           | -C(9)-C(4)           | 0.0(5)    |
|                     | C(7)-C(8)           | -C(9)-C(13)          | -179.8(3) |
|                     | C(5)-C(4)           | -C(9)-C(8)           | -0.9(4)   |
|                     | N(1)-C(4)           | -C(9)-C(8)           | 177.6(3)  |
|                     | C(5)-C(4)           | -C(9)-C(13)          | 178.9(3)  |
|                     | N(1)-C(4)           | -C(9)-C(13)          | -2.6(4)   |
|                     | C(6)-C(5)           | -C(10)-C(12)         | 66.1(4)   |
|                     | C(4)-C(5)           | -C(10)-C(12)         | -114.3(3) |
|                     | C(6)-C(5)           | -C(10)-C(11)         | -55.8(4)  |
|                     | C(4)-C(5)           | -C(10)-C(11)         | 123.8(3)  |
|                     | C(8)-C(9)           | -C(13)-C(15)         | 52.0(4)   |
|                     | C(4)-C(9)           | -C(13)-C(15)         | -127.8(3) |
|                     | C(8)-C(9)           | -C(13)-C(14)         | -72.0(4)  |
|                     | C(4)-C(9)           | -C(13)-C(14)         | 108.2(3)  |
|                     | C(1)-N(2)           | -C(16)-C(21)         | 97.1(3)   |
|                     | C(3)-N(2)           | -C(16)-C(21)         | -89.4(3)  |
|                     | C(1)-N(2)           | -C(16)-C(17)         | -85.6(3)  |
|                     | C(3)-N(2)           | -C(16)-C(17)         | 87.9(3)   |

## Table S6. Torsion angles [°] for $2_{Cl}$ ·SbF<sub>6</sub>·CH<sub>2</sub>Cl<sub>2</sub>.

| C(21)-C(16)-C(17)-C(18)  | 2.6(4)    |
|--------------------------|-----------|
| N(2)-C(16)-C(17)-C(18)   | -174.4(2) |
| C(21)-C(16)-C(17)-C(22)  | -178.0(2) |
| N(2)-C(16)-C(17)-C(22)   | 4.9(4)    |
| C(16)-C(17)-C(18)-C(19)  | -1.3(4)   |
| C(22)-C(17)-C(18)-C(19)  | 179.3(3)  |
| C(17)-C(18)-C(19)-C(20)  | -0.8(4)   |
| C(18)-C(19)-C(20)-C(21)  | 1.9(4)    |
| C(19)-C(20)-C(21)-C(16)  | -0.7(4)   |
| C(19)-C(20)-C(21)-C(25)  | -179.8(3) |
| C(17)-C(16)-C(21)-C(20)  | -1.6(4)   |
| N(2)-C(16)-C(21)-C(20)   | 175.4(2)  |
| C(17)-C(16)-C(21)-C(25)  | 177.4(2)  |
| N(2)-C(16)-C(21)-C(25)   | -5.6(4)   |
| C(18)-C(17)-C(22)-C(24)  | -46.8(3)  |
| C(16)-C(17)-C(22)-C(24)  | 133.9(3)  |
| C(18)-C(17)-C(22)-C(23)  | 77.6(3)   |
| C(16)-C(17)-C(22)-C(23)  | -101.7(3) |
| C(20)-C(21)-C(25)-C(27)  | -61.1(3)  |
| C(16)-C(21)-C(25)-C(27)  | 119.9(3)  |
| C(20)-C(21)-C(25)-C(26)  | 60.9(3)   |
| C(16)-C(21)-C(25)-C(26)  | -118.1(3) |
| Cl(3)-C(28A)-Cl(2)-C(28) | 59.8(11)  |
| Cl(3)-C(28)-Cl(2)-C(28A) | -92.9(13) |
| Cl(2)-C(28)-Cl(3)-C(28A) | 62.6(12)  |
| Cl(2)-C(28A)-Cl(3)-C(28) | -90.0(13) |
|                          |           |

Figure S2. Crystal structure for  $2_{Br}$ ·CF<sub>3</sub>SO<sub>3</sub>·CH<sub>2</sub>Cl<sub>2</sub>.



| Empirical formula                        | $C_{29}H_{38}BrCl_2F_3N_2O_3S$                         |
|------------------------------------------|--------------------------------------------------------|
| Formula weight                           | 702.48                                                 |
| Temperature                              | 100(2) K                                               |
| Wavelength                               | 0.71073 Å                                              |
| Crystal system                           | triclinic                                              |
| Space group                              | P-1                                                    |
| Unit cell dimensions                     | $a = 10.3704(3)$ Å $\alpha = 89.1950(10)^{\circ}$      |
|                                          | $b = 11.6440(3)$ Å $\beta = 75.2830(10)^{\circ}$       |
|                                          | $c = 16.0199(4)$ Å $\gamma = 63.5760(10)^{\circ}$      |
| Volume                                   | $1664.53(8) \text{ Å}^3$                               |
| Ζ                                        | 2                                                      |
| Density (calculated)                     | $1.402 \text{ g.cm}^{-3}$                              |
| Absorption coefficient ( $\mu$ )         | $1.506 \text{ mm}^{-1}$                                |
| F(000)                                   | 724                                                    |
| Crystal size                             | $0.34 \times 0.16 \times 0.15 \text{ mm}^3$            |
| $\theta$ range for data collection       | 1.97 to 26.42°                                         |
| Index ranges                             | $-12 \le h \le 12, -14 \le k \le 14, -19 \le l \le 20$ |
| Reflections collected                    | 24895                                                  |
| Independent reflections                  | $6786 [R_{int} = 0.0311]$                              |
| Completeness to $\theta = 26.42^{\circ}$ | 99.3 %                                                 |
| Absorption correction                    | numerical                                              |
| Max. and min. transmission               | 0.8056 and 0.6284                                      |
| Refinement method                        | Full-matrix least-squares on $F^2$                     |
| Data / restraints / parameters           | 6786 / 0 / 378                                         |
| Goodness-of-fit on $F^2$                 | 1.059                                                  |
| Final R indices $[I \ge 2\sigma(I)]$     | $R_1 = 0.0384$ , $wR_2 = 0.0908$                       |
| R indices (all data)                     | $R_1 = 0.0466, WR_2 = 0.0953$                          |
| Largest diff. peak and hole              | 1.299 and -0.911 $e^{-}$ .Å <sup>-3</sup>              |

Table S7. Crystal data and structure refinement for  $2_{Br}$ ·CF<sub>3</sub>SO<sub>3</sub>·CH<sub>2</sub>Cl<sub>2</sub>.

Table S8. Atomic coordinates and equivalent isotropic displacement parameters (Å<sup>2</sup>) for  $2_{Br}$ ·CF<sub>3</sub>SO<sub>3</sub>·CH<sub>2</sub>Cl<sub>2</sub>. U(eq) is defined as one third of the trace of the orthogonalized U<sub>ij</sub> tensor.

|       | X          | У           | Ζ            | U(eq)    |
|-------|------------|-------------|--------------|----------|
| Br(1) | 0.76760(3) | 0.42414(2)  | 0.28360(2)   | 0.018(1) |
| N(1)  | 0.8297(2)  | 0.17943(18) | 0.34299(12)  | 0.011(1) |
| N(2)  | 0.8356(2)  | 0.17925(19) | 0.20647(12)  | 0.014(1) |
| C(1)  | 0.8116(3)  | 0.2527(2)   | 0.27782(15)  | 0.012(1) |
| C(2)  | 0.8671(3)  | 0.0545(2)   | 0.31185(16)  | 0.016(1) |
| C(3)  | 0.8710(3)  | 0.0546(2)   | 0.22737(16)  | 0.017(1) |
| C(4)  | 0.7964(3)  | 0.2233(2)   | 0.43448(14)  | 0.013(1) |
| C(5)  | 0.6499(3)  | 0.2616(2)   | 0.48600(15)  | 0.014(1) |
| C(6)  | 0.6226(3)  | 0.2937(2)   | 0.57487(15)  | 0.017(1) |
| C(7)  | 0.7357(3)  | 0.2883(2)   | 0.60820(16)  | 0.018(1) |
| C(8)  | 0.8786(3)  | 0.2528(2)   | 0.55431(16)  | 0.017(1) |
| C(9)  | 0.9125(3)  | 0.2189(2)   | 0.46533(15)  | 0.015(1) |
| C(10) | 0.5260(3)  | 0.2675(2)   | 0.44921(16)  | 0.016(1) |
| C(11) | 0.3771(3)  | 0.3887(2)   | 0.48708(17)  | 0.020(1) |
| C(12) | 0.5056(3)  | 0.1452(3)   | 0.4632(2)    | 0.025(1) |
| C(13) | 1.0685(3)  | 0.1807(3)   | 0.40706(16)  | 0.019(1) |
| C(14) | 1.1073(3)  | 0.2929(3)   | 0.4092(2)    | 0.034(1) |
| C(15) | 1.1855(3)  | 0.0596(3)   | 0.43214(19)  | 0.026(1) |
| C(16) | 0.8055(3)  | 0.2258(2)   | 0.12542(15)  | 0.015(1) |
| C(17) | 0.9216(3)  | 0.2270(2)   | 0.05918(16)  | 0.019(1) |
| C(18) | 0.8878(3)  | 0.2685(3)   | -0.01842(17) | 0.026(1) |
| C(19) | 0.7458(3)  | 0.3075(3)   | -0.02729(18) | 0.030(1) |
| C(20) | 0.6333(3)  | 0.3057(3)   | 0.04044(17)  | 0.027(1) |
| C(21) | 0.6602(3)  | 0.2640(3)   | 0.11876(16)  | 0.019(1) |
| C(22) | 1.0778(3)  | 0.1858(3)   | 0.06793(17)  | 0.023(1) |
| C(23) | 1.1245(4)  | 0.2936(4)   | 0.0478(2)    | 0.046(1) |
| C(24) | 1.1905(3)  | 0.0617(3)   | 0.0085(2)    | 0.036(1) |
| C(25) | 0.5353(3)  | 0.2625(3)   | 0.19260(17)  | 0.023(1) |
| C(26) | 0.4865(4)  | 0.1635(4)   | 0.1699(2)    | 0.051(1) |
| C(27) | 0.4049(4)  | 0.3955(3)   | 0.2195(3)    | 0.055(1) |

| S(1)   | 0.80545(7)  | 0.75568(6)  | 0.28162(4)  | 0.016(1) |
|--------|-------------|-------------|-------------|----------|
| F(1)   | 1.09282(18) | 0.68670(16) | 0.23778(10) | 0.028(1) |
| F(2)   | 1.02907(19) | 0.56084(16) | 0.31868(11) | 0.034(1) |
| F(3)   | 1.03590(19) | 0.55346(16) | 0.18316(11) | 0.035(1) |
| O(1)   | 0.7218(2)   | 0.68224(17) | 0.29617(11) | 0.021(1) |
| O(2)   | 0.7966(2)   | 0.82349(18) | 0.20531(12) | 0.024(1) |
| O(3)   | 0.7941(2)   | 0.82738(18) | 0.35812(12) | 0.025(1) |
| C(28)  | 1.0000(3)   | 0.6325(3)   | 0.25390(17) | 0.021(1) |
| Cl(1)  | 0.55898(12) | 0.64591(10) | 0.13399(7)  | 0.058(1) |
| Cl(2)  | 0.30823(14) | 0.90359(12) | 0.19508(7)  | 0.070(1) |
| C(29)  | 0.4976(6)   | 0.8056(4)   | 0.1769(5)   | 0.095(2) |
| H(2A)  | 0.8863      | -0.0174     | 0.3443      | 0.019    |
| H(3A)  | 0.8939      | -0.0174     | 0.1890      | 0.021    |
| H(6A)  | 0.5252      | 0.3194      | 0.6128      | 0.020    |
| H(7A)  | 0.7153      | 0.3093      | 0.6688      | 0.022    |
| H(8A)  | 0.9541      | 0.2516      | 0.5782      | 0.021    |
| H(10A) | 0.5577      | 0.2704      | 0.3851      | 0.020    |
| H(11A) | 0.3948      | 0.4648      | 0.4848      | 0.031    |
| H(11B) | 0.3340      | 0.3810      | 0.5476      | 0.031    |
| H(11C) | 0.3074      | 0.3979      | 0.4531      | 0.031    |
| H(12A) | 0.6003      | 0.0691      | 0.4357      | 0.038    |
| H(12B) | 0.4279      | 0.1493      | 0.4373      | 0.038    |
| H(12C) | 0.4756      | 0.1393      | 0.5256      | 0.038    |
| H(13A) | 1.0695      | 0.1615      | 0.3462      | 0.022    |
| H(14A) | 1.0308      | 0.3696      | 0.3933      | 0.051    |
| H(14B) | 1.2052      | 0.2695      | 0.3680      | 0.051    |
| H(14C) | 1.1108      | 0.3113      | 0.4679      | 0.051    |
| H(15A) | 1.1562      | -0.0097     | 0.4330      | 0.039    |
| H(15B) | 1.1922      | 0.0783      | 0.4899      | 0.039    |
| H(15C) | 1.2832      | 0.0326      | 0.3896      | 0.039    |
| H(18A) | 0.9637      | 0.2699      | -0.0658     | 0.031    |
| H(19A) | 0.7251      | 0.3359      | -0.0804     | 0.036    |
| H(20A) | 0.5361      | 0.3335      | 0.0332      | 0.032    |
| H(22A) | 1.0769      | 0.1685      | 0.1293      | 0.028    |
| H(23A) | 1.0466      | 0.3744      | 0.0828      | 0.068    |
| H(23B) | 1.1375      | 0.3049      | -0.0140     | 0.068    |

| H(23C) | 1.2191 | 0.2701  | 0.0618  | 0.068 |
|--------|--------|---------|---------|-------|
| H(24A) | 1.1600 | -0.0063 | 0.0228  | 0.054 |
| H(24B) | 1.2900 | 0.0348  | 0.0167  | 0.054 |
| H(24C) | 1.1938 | 0.0770  | -0.0521 | 0.054 |
| H(25A) | 0.5765 | 0.2355  | 0.2436  | 0.027 |
| H(26A) | 0.4069 | 0.1647  | 0.2190  | 0.077 |
| H(26B) | 0.5723 | 0.0773  | 0.1577  | 0.077 |
| H(26C) | 0.4491 | 0.1852  | 0.1186  | 0.077 |
| H(27A) | 0.4399 | 0.4556  | 0.2350  | 0.082 |
| H(27B) | 0.3296 | 0.3929  | 0.2698  | 0.082 |
| H(27C) | 0.3603 | 0.4244  | 0.1712  | 0.082 |
| H(29A) | 0.5234 | 0.8039  | 0.2325  | 0.114 |
| H(29B) | 0.5529 | 0.8439  | 0.1363  | 0.114 |

Table S9. Anisotropic displacement parameters (Å<sup>2</sup>) for  $2_{Br}$ ·CF<sub>3</sub>SO<sub>3</sub>·CH<sub>2</sub>Cl<sub>2</sub>.

The anisotropic displacement factor exponent takes the form:

 $-2\pi^{2}[h^{2} a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12}]$ 

|       | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Br(1) | 0.0249(2)       | 0.0132(1)       | 0.0161(1)       | 0.0021(1)       | -0.0050(1)      | -0.0088(1)      |
| N(1)  | 0.0125(10)      | 0.0114(10)      | 0.0121(9)       | 0.0018(7)       | -0.0038(8)      | -0.0069(8)      |
| N(2)  | 0.0169(10)      | 0.0123(10)      | 0.0113(9)       | 0.0006(8)       | -0.0034(8)      | -0.0068(8)      |
| C(1)  | 0.0109(11)      | 0.0114(11)      | 0.0134(11)      | 0.0010(9)       | -0.0027(9)      | -0.0049(9)      |
| C(2)  | 0.0200(13)      | 0.0111(12)      | 0.0198(12)      | 0.0031(9)       | -0.0047(10)     | -0.0099(10)     |
| C(3)  | 0.0203(13)      | 0.0126(12)      | 0.0202(13)      | 0.0000(10)      | -0.0053(10)     | -0.0082(10)     |
| C(4)  | 0.0189(12)      | 0.0121(11)      | 0.0101(11)      | 0.0037(9)       | -0.0047(9)      | -0.0089(10)     |
| C(5)  | 0.0169(12)      | 0.0117(11)      | 0.0163(12)      | 0.0041(9)       | -0.0060(10)     | -0.0088(10)     |
| C(6)  | 0.0199(13)      | 0.0164(12)      | 0.0131(11)      | 0.0013(9)       | -0.0014(10)     | -0.0092(10)     |
| C(7)  | 0.0276(14)      | 0.0166(12)      | 0.0118(11)      | 0.0013(9)       | -0.0065(10)     | -0.0106(11)     |
| C(8)  | 0.0232(13)      | 0.0176(13)      | 0.0172(12)      | 0.0052(10)      | -0.0111(10)     | -0.0119(11)     |
| C(9)  | 0.0186(13)      | 0.0126(12)      | 0.0172(12)      | 0.0060(9)       | -0.0067(10)     | -0.0099(10)     |
| C(10) | 0.0160(12)      | 0.0206(13)      | 0.0148(12)      | 0.0015(10)      | -0.0037(10)     | -0.0104(11)     |
| C(11) | 0.0195(13)      | 0.0171(13)      | 0.0275(14)      | 0.0046(10)      | -0.0107(11)     | -0.0088(11)     |
| C(12) | 0.0192(14)      | 0.0173(13)      | 0.0423(17)      | -0.0022(12)     | -0.0102(12)     | -0.0097(11)     |
| C(13) | 0.0179(13)      | 0.0272(14)      | 0.0162(12)      | 0.0067(10)      | -0.0070(10)     | -0.0137(11)     |
| C(14) | 0.0251(16)      | 0.0276(16)      | 0.055(2)        | 0.0180(14)      | -0.0094(14)     | -0.0172(13)     |
| C(15) | 0.0213(14)      | 0.0217(14)      | 0.0328(15)      | 0.0046(12)      | -0.0041(12)     | -0.0106(12)     |
| C(16) | 0.0204(13)      | 0.0163(12)      | 0.0104(11)      | 0.0008(9)       | -0.0053(10)     | -0.0084(10)     |
| C(17) | 0.0208(13)      | 0.0213(13)      | 0.0141(12)      | -0.0013(10)     | -0.0031(10)     | -0.0105(11)     |
| C(18) | 0.0282(15)      | 0.0372(17)      | 0.0139(12)      | 0.0047(11)      | -0.0023(11)     | -0.0189(13)     |
| C(19) | 0.0312(16)      | 0.0422(18)      | 0.0162(13)      | 0.0091(12)      | -0.0090(12)     | -0.0147(14)     |
| C(20) | 0.0209(14)      | 0.0389(17)      | 0.0189(13)      | 0.0035(12)      | -0.0096(11)     | -0.0105(13)     |
| C(21) | 0.0187(13)      | 0.0247(14)      | 0.0138(12)      | 0.0006(10)      | -0.0032(10)     | -0.0099(11)     |
| C(22) | 0.0208(14)      | 0.0354(16)      | 0.0148(12)      | 0.0019(11)      | -0.0037(11)     | -0.0144(13)     |
| C(23) | 0.039(2)        | 0.054(2)        | 0.058(2)        | 0.0015(18)      | -0.0146(17)     | -0.0326(18)     |
| C(24) | 0.0273(16)      | 0.0382(18)      | 0.0324(16)      | -0.0014(14)     | -0.0083(13)     | -0.0065(14)     |
| C(25) | 0.0179(13)      | 0.0304(15)      | 0.0180(13)      | 0.0010(11)      | -0.0051(10)     | -0.0092(12)     |
| C(26) | 0.052(2)        | 0.064(3)        | 0.041(2)        | -0.0132(18)     | 0.0120(17)      | -0.042(2)       |
| C(27) | 0.035(2)        | 0.0341(19)      | 0.063(2)        | 0.0033(17)      | 0.0224(17)      | -0.0072(16)     |

| S(1)  | 0.0201(3)  | 0.0133(3)  | 0.0168(3)  | 0.0022(2)  | -0.0033(2)  | -0.0097(3)  |
|-------|------------|------------|------------|------------|-------------|-------------|
| F(1)  | 0.0236(8)  | 0.0371(10) | 0.0286(9)  | 0.0055(7)  | -0.0055(7)  | -0.0188(8)  |
| F(2)  | 0.0326(10) | 0.0306(9)  | 0.0356(10) | 0.0174(8)  | -0.0118(8)  | -0.0102(8)  |
| F(3)  | 0.0339(10) | 0.0292(9)  | 0.0324(9)  | -0.0139(7) | 0.0002(8)   | -0.0104(8)  |
| O(1)  | 0.0251(10) | 0.0174(9)  | 0.0238(9)  | 0.0029(7)  | -0.0045(8)  | -0.0137(8)  |
| O(2)  | 0.0296(11) | 0.0240(10) | 0.0252(10) | 0.0115(8)  | -0.0099(8)  | -0.0163(9)  |
| O(3)  | 0.0331(11) | 0.0213(10) | 0.0209(9)  | -0.0036(8) | -0.0011(8)  | -0.0165(9)  |
| C(28) | 0.0249(14) | 0.0199(13) | 0.0192(13) | 0.0029(10) | -0.0040(11) | -0.0119(12) |
| Cl(1) | 0.0700(7)  | 0.0586(6)  | 0.0750(7)  | 0.0331(5)  | -0.0534(6)  | -0.0383(5)  |
| Cl(2) | 0.0746(8)  | 0.0777(8)  | 0.0585(6)  | 0.0070(6)  | -0.0260(6)  | -0.0318(6)  |
| C(29) | 0.080(3)   | 0.055(3)   | 0.197(7)   | 0.047(4)   | -0.089(4)   | -0.046(3)   |

| atom-atom    | distance   | atom-atom    | distance   |
|--------------|------------|--------------|------------|
| Br(1)-C(1)   | 1.837(2)   | N(1)-C(1)    | 1.336(3)   |
| N(1)-C(2)    | 1.391(3)   | N(1)-C(4)    | 1.461(3)   |
| N(2)-C(1)    | 1.339(3)   | N(2)-C(3)    | 1.388(3)   |
| N(2)-C(16)   | 1.454(3)   | C(2)-C(3)    | 1.344(3)   |
| C(4)-C(9)    | 1.394(3)   | C(4)-C(5)    | 1.399(3)   |
| C(5)-C(6)    | 1.401(3)   | C(5)-C(10)   | 1.520(3)   |
| C(6)-C(7)    | 1.385(4)   | C(7)-C(8)    | 1.388(4)   |
| C(8)-C(9)    | 1.396(3)   | C(9)-C(13)   | 1.514(3)   |
| C(10)-C(11)  | 1.534(3)   | C(10)-C(12)  | 1.535(4)   |
| C(13)-C(15)  | 1.527(4)   | C(13)-C(14)  | 1.531(4)   |
| C(16)-C(17)  | 1.393(4)   | C(16)-C(21)  | 1.401(4)   |
| C(17)-C(18)  | 1.399(4)   | C(17)-C(22)  | 1.514(4)   |
| C(18)-C(19)  | 1.379(4)   | C(19)-C(20)  | 1.384(4)   |
| C(20)-C(21)  | 1.389(4)   | C(21)-C(25)  | 1.523(4)   |
| C(22)-C(24)  | 1.526(4)   | C(22)-C(23)  | 1.538(4)   |
| C(25)-C(27)  | 1.507(4)   | C(25)-C(26)  | 1.530(4)   |
| S(1)-O(3)    | 1.4426(18) | S(1)-O(1)    | 1.4455(18) |
| S(1)-O(2)    | 1.4463(18) | S(1)-C(28)   | 1.820(3)   |
| F(1)-C(28)   | 1.341(3)   | F(2)-C(28)   | 1.333(3)   |
| F(3)-C(28)   | 1.334(3)   | Cl(1)-C(29)  | 1.760(5)   |
| Cl(2)-C(29)  | 1.723(5)   | C(2)-H(2A)   | 0.9500     |
| C(3)-H(3A)   | 0.9500     | C(6)-H(6A)   | 0.9500     |
| C(7)-H(7A)   | 0.9500     | C(8)-H(8A)   | 0.9500     |
| C(10)-H(10A) | 1.0000     | C(11)-H(11A) | 0.9800     |
| C(11)-H(11B) | 0.9800     | C(11)-H(11C) | 0.9800     |
| C(12)-H(12A) | 0.9800     | C(12)-H(12B) | 0.9800     |
| C(12)-H(12C) | 0.9800     | C(13)-H(13A) | 1.0000     |
| C(14)-H(14A) | 0.9800     | C(14)-H(14B) | 0.9800     |
| C(14)-H(14C) | 0.9800     | C(15)-H(15A) | 0.9800     |
| C(15)-H(15B) | 0.9800     | C(15)-H(15C) | 0.9800     |
| C(18)-H(18A) | 0.9500     | C(19)-H(19A) | 0.9500     |
| C(20)-H(20A) | 0.9500     | C(22)-H(22A) | 1.0000     |
| C(23)-H(23A) | 0.9800     | C(23)-H(23B) | 0.9800     |
| C(23)-H(23C) | 0.9800     | C(24)-H(24A) | 0.9800     |
| C(24)-H(24B) | 0.9800     | C(24)-H(24C) | 0.9800     |
| C(25)-H(25A) | 1.0000     | C(26)-H(26A) | 0.9800     |
| C(26)-H(26B) | 0.9800     | C(26)-H(26C) | 0.9800     |
| C(27)-H(27A) | 0.9800     | C(27)-H(27B) | 0.9800     |
| C(27)-H(27C) | 0.9800     | C(29)-H(29A) | 0.9900     |
| C(29)-H(29B) | 0.9900     |              |            |

#### Table S10. Bond lengths [Å] for $2_{Br}$ ·CF<sub>3</sub>SO<sub>3</sub>·CH<sub>2</sub>Cl<sub>2</sub>.

| atom-atom-atom      | angle      | atom-atom-atom      | angle      |
|---------------------|------------|---------------------|------------|
| C(1)-N(1)-C(2)      | 108.44(19) | C(1)-N(1)-C(4)      | 126.89(19) |
| C(2)-N(1)-C(4)      | 124.16(19) | C(1)-N(2)-C(3)      | 108.27(19) |
| C(1)-N(2)-C(16)     | 125.8(2)   | C(3)-N(2)-C(16)     | 125.2(2)   |
| N(1)-C(1)-N(2)      | 108.6(2)   | N(1)-C(1)-Br(1)     | 125.93(17) |
| N(2)-C(1)-Br(1)     | 125.44(17) | C(3)-C(2)-N(1)      | 107.2(2)   |
| C(2)-C(3)-N(2)      | 107.5(2)   | C(9)-C(4)-C(5)      | 124.5(2)   |
| C(4)-C(5)-C(6)      | 116.3(2)   | C(4)-C(5)-C(10)     | 122.7(2)   |
| C(6)-C(5)-C(10)     | 121.0(2)   | C(7)-C(6)-C(5)      | 120.8(2)   |
| C(9)-C(4)-N(1)      | 118.5(2)   | C(5)-C(4)-N(1)      | 117.0(2)   |
| C(6)-C(7)-C(8)      | 120.9(2)   | C(7)-C(8)-C(9)      | 120.7(2)   |
| C(4)-C(9)-C(8)      | 116.7(2)   | C(4)-C(9)-C(13)     | 123.0(2)   |
| C(8)-C(9)-C(13)     | 120.3(2)   | C(5)-C(10)-C(11)    | 112.5(2)   |
| C(5)-C(10)-C(12)    | 110.6(2)   | C(11)-C(10)-C(12)   | 110.6(2)   |
| C(9)-C(13)-C(15)    | 111.6(2)   | C(9)-C(13)-C(14)    | 110.2(2)   |
| C(15)-C(13)-C(14)   | 110.8(2)   | C(17)-C(16)-C(21)   | 124.2(2)   |
| C(17)-C(16)-N(2)    | 118.8(2)   | C(21)-C(16)-N(2)    | 116.9(2)   |
| C(16)-C(17)-C(18)   | 116.4(2)   | C(16)-C(17)-C(22)   | 123.4(2)   |
| C(18)-C(17)-C(22)   | 120.2(2)   | C(19)-C(18)-C(17)   | 121.0(3)   |
| C(18)-C(19)-C(20)   | 120.7(3)   | C(19)-C(20)-C(21)   | 121.1(3)   |
| C(20)-C(21)-C(16)   | 116.5(2)   | C(20)-C(21)-C(25)   | 120.4(2)   |
| C(16)-C(21)-C(25)   | 123.0(2)   | C(17)-C(22)-C(24)   | 110.7(2)   |
| C(17)-C(22)-C(23)   | 110.8(2)   | C(24)-C(22)-C(23)   | 110.5(3)   |
| C(27)-C(25)-C(21)   | 111.2(2)   | C(27)-C(25)-C(26)   | 111.8(3)   |
| C(21)-C(25)-C(26)   | 111.7(2)   | O(3)-S(1)-O(1)      | 115.35(11) |
| O(3)-S(1)-O(2)      | 115.44(11) | O(1)-S(1)-O(2)      | 114.58(11) |
| O(3)-S(1)-C(28)     | 101.92(12) | O(1)-S(1)-C(28)     | 103.72(12) |
| O(2)-S(1)-C(28)     | 103.24(12) | F(2)-C(28)-F(3)     | 107.9(2)   |
| F(2)-C(28)-F(1)     | 107.3(2)   | F(3)-C(28)-F(1)     | 107.2(2)   |
| F(2)-C(28)-S(1)     | 111.39(18) | F(3)-C(28)-S(1)     | 112.15(18) |
| F(1)-C(28)-S(1)     | 110.74(18) | Cl(2)-C(29)-Cl(1)   | 114.4(2)   |
| C(3)-C(2)-H(2A)     | 126.4      | N(1)-C(2)-H(2A)     | 126.4      |
| C(2)-C(3)-H(3A)     | 126.2      | N(2)-C(3)-H(3A)     | 126.2      |
| C(7)-C(6)-H(6A)     | 119.6      | C(5)-C(6)-H(6A)     | 119.6      |
| C(6)-C(7)-H(7A)     | 119.5      | C(8)-C(7)-H(7A)     | 119.5      |
| C(7)-C(8)-H(8A)     | 119.7      | C(9)-C(8)-H(8A)     | 119.7      |
| C(5)-C(10)-H(10A)   | 107.6      | C(11)-C(10)-H(10A)  | 107.6      |
| C(12)-C(10)-H(10A)  | 107.6      | C(10)-C(11)-H(11A)  | 109.5      |
| C(10)-C(11)-H(11B)  | 109.5      | H(11A)-C(11)-H(11B) | 109.5      |
| С(10)-С(11)-Н(11С)  | 109.5      | H(11A)-C(11)-H(11C) | 109.5      |
| H(11B)-C(11)-H(11C) | 109.5      | C(10)-C(12)-H(12A)  | 109.5      |
| C(10)-C(12)-H(12B)  | 109.5      | H(12A)-C(12)-H(12B) | 109.5      |
| C(10)-C(12)-H(12C)  | 109.5      | H(12A)-C(12)-H(12C) | 109.5      |

#### Table S11. Bond angles [°] for $2_{Br}$ ·CF<sub>3</sub>SO<sub>3</sub>·CH<sub>2</sub>Cl<sub>2</sub>.

| H(12B)-C(12)-H(12C) | 109.5 | C(9)-C(13)-H(13A)   | 108.0 |
|---------------------|-------|---------------------|-------|
| C(15)-C(13)-H(13A)  | 108.0 | C(14)-C(13)-H(13A)  | 108.0 |
| C(13)-C(14)-H(14A)  | 109.5 | C(13)-C(14)-H(14B)  | 109.5 |
| H(14A)-C(14)-H(14B) | 109.5 | C(13)-C(14)-H(14C)  | 109.5 |
| H(14A)-C(14)-H(14C) | 109.5 | H(14B)-C(14)-H(14C) | 109.5 |
| C(13)-C(15)-H(15A)  | 109.5 | C(13)-C(15)-H(15B)  | 109.5 |
| H(15A)-C(15)-H(15B) | 109.5 | C(13)-C(15)-H(15C)  | 109.5 |
| H(15A)-C(15)-H(15C) | 109.5 | H(15B)-C(15)-H(15C) | 109.5 |
| C(19)-C(18)-H(18A)  | 119.5 | C(17)-C(18)-H(18A)  | 119.5 |
| C(18)-C(19)-H(19A)  | 119.6 | C(20)-C(19)-H(19A)  | 119.6 |
| C(19)-C(20)-H(20A)  | 119.5 | C(21)-C(20)-H(20A)  | 119.5 |
| C(17)-C(22)-H(22A)  | 108.3 | C(24)-C(22)-H(22A)  | 108.3 |
| C(23)-C(22)-H(22A)  | 108.3 | C(22)-C(23)-H(23A)  | 109.5 |
| C(22)-C(23)-H(23B)  | 109.5 | H(23A)-C(23)-H(23B) | 109.5 |
| C(22)-C(23)-H(23C)  | 109.5 | H(23A)-C(23)-H(23C) | 109.5 |
| H(23B)-C(23)-H(23C) | 109.5 | C(22)-C(24)-H(24A)  | 109.5 |
| C(22)-C(24)-H(24B)  | 109.5 | H(24A)-C(24)-H(24B) | 109.5 |
| C(22)-C(24)-H(24C)  | 109.5 | H(24A)-C(24)-H(24C) | 109.5 |
| H(24B)-C(24)-H(24C) | 109.5 | C(27)-C(25)-H(25A)  | 107.3 |
| C(21)-C(25)-H(25A)  | 107.3 | C(26)-C(25)-H(25A)  | 107.3 |
| C(25)-C(26)-H(26A)  | 109.5 | C(25)-C(26)-H(26B)  | 109.5 |
| H(26A)-C(26)-H(26B) | 109.5 | C(25)-C(26)-H(26C)  | 109.5 |
| H(26A)-C(26)-H(26C) | 109.5 | H(26B)-C(26)-H(26C) | 109.5 |
| C(25)-C(27)-H(27A)  | 109.5 | C(25)-C(27)-H(27B)  | 109.5 |
| H(27A)-C(27)-H(27B) | 109.5 | C(25)-C(27)-H(27C)  | 109.5 |
| H(27A)-C(27)-H(27C) | 109.5 | H(27B)-C(27)-H(27C) | 109.5 |
| Cl(2)-C(29)-H(29A)  | 108.7 | Cl(1)-C(29)-H(29A)  | 108.7 |
| Cl(2)-C(29)-H(29B)  | 108.7 | Cl(1)-C(29)-H(29B)  | 108.7 |
| H(29A)-C(29)-H(29B) | 107.6 |                     |       |

| atom-atom-atom      | angle      | atom-atom-atom-atom | angle       |
|---------------------|------------|---------------------|-------------|
| C(2)-N(1)-C(1)-N(2) | 0.2(3)     | C(4)-N(1)-C(1)-N(2) | -171.8(2)   |
|                     | C(2)-N(1)  | -C(1)-Br(1)         | -177.85(17) |
|                     | C(4)-N(1)  | -C(1)-Br(1)         | 10.1(3)     |
|                     | C(3)-N(2)  | -C(1)-N(1)          | -0.3(3)     |
|                     | C(16)-N(2) | -C(1)-N(1)          | 170.2(2)    |
|                     | C(3)-N(2)  | -C(1)-Br(1)         | 177.74(18)  |
|                     | C(16)-N(2) | -C(1)-Br(1)         | -11.7(3)    |
|                     | C(1)-N(1)  | -C(2)-C(3)          | 0.0(3)      |
|                     | C(4)-N(1)  | -C(2)-C(3)          | 172.3(2)    |
|                     | N(1)-C(2)- | -C(3)-N(2)          | -0.2(3)     |
|                     | C(1)-N(2)  | -C(3)-C(2)          | 0.3(3)      |
|                     | C(16)-N(2) | -C(3)-C(2)          | -170.3(2)   |
|                     | C(1)-N(1)  | -C(4)-C(9)          | -95.6(3)    |
|                     | C(2)-N(1)  | -C(4)-C(9)          | 93.6(3)     |
|                     | C(1)-N(1)  | -C(4)-C(5)          | 87.2(3)     |
|                     | C(2)-N(1)  | -C(4)-C(5)          | -83.7(3)    |
|                     | C(9)-C(4)  | -C(5)-C(6)          | -1.9(4)     |
|                     | N(1)-C(4)- | -C(5)-C(6)          | 175.1(2)    |
|                     | C(9)-C(4)  | -C(5)-C(10)         | 178.8(2)    |
|                     | N(1)-C(4)  | -C(5)-C(10)         | -4.2(3)     |
|                     | C(4)-C(5)- | -C(6)-C(7)          | 0.7(4)      |
|                     | C(10)-C(5) | -C(6)-C(7)          | -179.9(2)   |
|                     | C(5)-C(6)  | -C(7)-C(8)          | 0.9(4)      |
|                     | C(6)-C(7)  | -C(8)-C(9)          | -1.4(4)     |
|                     | C(5)-C(4)  | -C(9)-C(8)          | 1.4(4)      |
|                     | N(1)-C(4)  | -C(9)-C(8)          | -175.6(2)   |
|                     | C(5)-C(4)- | -C(9)-C(13)         | -178.1(2)   |
|                     | N(1)-C(4)- | -C(9)-C(13)         | 5.0(3)      |
|                     | C(7)-C(8)  | -C(9)-C(4)          | 0.3(4)      |
|                     | C(7)-C(8)  | -C(9)-C(13)         | 179.8(2)    |
|                     | C(4)-C(5)  | -C(10)-C(11)        | -137.7(2)   |
|                     | C(6)-C(5)  | -C(10)-C(11)        | 43.0(3)     |
|                     | C(4)-C(5)- | -C(10)-C(12)        | 98.0(3)     |
|                     | C(6)-C(5)  | -C(10)-C(12)        | -81.3(3)    |
|                     | C(4)-C(9)  | -C(13)-C(15)        | -118.3(3)   |
|                     | C(8)-C(9)- | -C(13)-C(15)        | 62.3(3)     |
|                     | C(4)-C(9)- | -C(13)-C(14)        | 118.2(3)    |
|                     | C(8)-C(9)- | -C(13)-C(14)        | -61.3(3)    |
|                     | C(1)-N(2)  | -C(16)-C(17)        | 94.9(3)     |
|                     | C(3)-N(2)  | -C(16)-C(17)        | -96.1(3)    |
|                     | C(1)-N(2)  | -C(16)-C(21)        | -86.5(3)    |
|                     | C(3)-N(2)  | -C(16)-C(21)        | 82.5(3)     |

#### Table S12. Torsion angles [°] for $2_{Br}$ ·CF<sub>3</sub>SO<sub>3</sub>·CH<sub>2</sub>Cl<sub>2</sub>.

| C(21)-C(16)-C(17)-C(18) | -0.6(4)     |
|-------------------------|-------------|
| N(2)-C(16)-C(17)-C(18)  | 177.9(2)    |
| C(21)-C(16)-C(17)-C(22) | 179.8(2)    |
| N(2)-C(16)-C(17)-C(22)  | -1.8(4)     |
| C(16)-C(17)-C(18)-C(19) | 0.9(4)      |
| C(22)-C(17)-C(18)-C(19) | -179.4(3)   |
| C(17)-C(18)-C(19)-C(20) | -0.4(5)     |
| C(18)-C(19)-C(20)-C(21) | -0.4(5)     |
| C(19)-C(20)-C(21)-C(16) | 0.7(4)      |
| C(19)-C(20)-C(21)-C(25) | -179.9(3)   |
| C(17)-C(16)-C(21)-C(20) | -0.2(4)     |
| N(2)-C(16)-C(21)-C(20)  | -178.7(2)   |
| C(17)-C(16)-C(21)-C(25) | -179.5(2)   |
| N(2)-C(16)-C(21)-C(25)  | 2.0(4)      |
| C(16)-C(17)-C(22)-C(24) | 112.4(3)    |
| C(18)-C(17)-C(22)-C(24) | -67.3(3)    |
| C(16)-C(17)-C(22)-C(23) | -124.7(3)   |
| C(18)-C(17)-C(22)-C(23) | 55.6(3)     |
| C(20)-C(21)-C(25)-C(27) | -59.1(4)    |
| C(16)-C(21)-C(25)-C(27) | 120.2(3)    |
| C(20)-C(21)-C(25)-C(26) | 66.7(4)     |
| C(16)-C(21)-C(25)-C(26) | -114.1(3)   |
| O(3)-S(1)-C(28)-F(2)    | 59.1(2)     |
| O(1)-S(1)-C(28)-F(2)    | -61.1(2)    |
| O(2)-S(1)-C(28)-F(2)    | 179.11(18)  |
| O(3)-S(1)-C(28)-F(3)    | -179.92(18) |
| O(1)-S(1)-C(28)-F(3)    | 59.9(2)     |
| O(2)-S(1)-C(28)-F(3)    | -59.9(2)    |
| O(3)-S(1)-C(28)-F(1)    | -60.26(19)  |
| O(1)-S(1)-C(28)-F(1)    | 179.60(17)  |
| O(2)-S(1)-C(28)-F(1)    | 59.78(19)   |
|                         |             |

Figure S3. Crystal structure for  $2_1 \cdot I_3$ .



Table S13 Crystal data and structure refinement for  $\mathbf{2}_{I}$ ·I<sub>3</sub>.

| Empirical formula                        | $C_{27}H_{36}I_4N_2$                                   |
|------------------------------------------|--------------------------------------------------------|
| Formula weight                           | 896.18                                                 |
| Temperature                              | 100(2) K                                               |
| Wavelength                               | 1.54178 Å                                              |
| Crystal system                           | triclinic                                              |
| Space group                              | P-1                                                    |
| Unit cell dimensions                     | $a = 10.0574(3)$ Å $\alpha = 89.812(2)^{\circ}$        |
|                                          | $b = 10.0847(2)$ Å $\beta = 72.816(2)^{\circ}$         |
|                                          | $c = 16.5285(4)$ Å $\gamma = 77.8020(10)^{\circ}$      |
| Volume                                   | $1562.28(7) \text{ Å}^3$                               |
| Ζ                                        | 2                                                      |
| Density (calculated)                     | $1.905 \text{ g.cm}^{-3}$                              |
| Absorption coefficient ( $\mu$ )         | 31.441 mm <sup>-1</sup>                                |
| F(000)                                   | 848                                                    |
| Crystal size                             | $0.17 	imes 0.08 	imes 0.04 \text{ mm}^3$              |
| $\theta$ range for data collection       | 2.80 to 69.56°                                         |
| Index ranges                             | $-12 \le h \le 11, -12 \le k \le 12, -18 \le l \le 20$ |
| Reflections collected                    | 15215                                                  |
| Independent reflections                  | $5458 [R_{int} = 0.0427]$                              |
| Completeness to $\theta = 69.56^{\circ}$ | 93.0 %                                                 |
| Absorption correction                    | numerical                                              |
| Max. and min. transmission               | 0.5844 and 0.2559                                      |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>            |
| Data / restraints / parameters           | 5458 / 0 / 306                                         |
| Goodness-of-fit on $F^2$                 | 1.028                                                  |
| Final R indices $[I \ge 2\sigma(I)]$     | $R_1 = 0.0350, wR_2 = 0.0779$                          |
| R indices (all data)                     | $R_1 = 0.0489, wR_2 = 0.0836$                          |
| Largest diff. peak and hole              | 1.114 and -1.097 e <sup>-</sup> .Å <sup>-3</sup>       |

| Table S14                                   | . Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$       |
|---------------------------------------------|-------------------------------------------------------------------------------------|
| for $2_{\mathbf{I}} \cdot \mathbf{I}_3$ . U | $U(eq)$ is defined as one third of the trace of the orthogonalized $U_{ij}$ tensor. |

|       | Х           | У          | Z          | U(eq)    |
|-------|-------------|------------|------------|----------|
| I(1)  | 0.41104(4)  | 0.47752(4) | 0.26810(2) | 0.016(1) |
| N(1)  | 0.5259(5)   | 0.1899(5)  | 0.3119(3)  | 0.019(1) |
| N(2)  | 0.5355(5)   | 0.1912(5)  | 0.1796(3)  | 0.019(1) |
| C(1)  | 0.5002(6)   | 0.2710(5)  | 0.2510(4)  | 0.014(1) |
| C(2)  | 0.5768(7)   | 0.0565(6)  | 0.2782(4)  | 0.023(1) |
| C(3)  | 0.5818(7)   | 0.0585(6)  | 0.1946(4)  | 0.024(1) |
| C(4)  | 0.5102(6)   | 0.2316(6)  | 0.3990(4)  | 0.017(1) |
| C(5)  | 0.6276(7)   | 0.2612(6)  | 0.4171(4)  | 0.019(1) |
| C(6)  | 0.6131(7)   | 0.2889(6)  | 0.5026(4)  | 0.023(1) |
| C(7)  | 0.4871(6)   | 0.2865(7)  | 0.5653(4)  | 0.021(1) |
| C(8)  | 0.3709(7)   | 0.2601(6)  | 0.5446(4)  | 0.023(1) |
| C(9)  | 0.3797(7)   | 0.2307(6)  | 0.4603(4)  | 0.019(1) |
| C(10) | 0.7677(6)   | 0.2639(6)  | 0.3498(4)  | 0.021(1) |
| C(11) | 0.8063(7)   | 0.4016(6)  | 0.3556(5)  | 0.030(2) |
| C(12) | 0.8864(7)   | 0.1488(7)  | 0.3574(5)  | 0.033(2) |
| C(13) | 0.2480(7)   | 0.2064(7)  | 0.4398(4)  | 0.023(1) |
| C(14) | 0.2018(8)   | 0.0831(7)  | 0.4845(5)  | 0.033(2) |
| C(15) | 0.1250(8)   | 0.3332(7)  | 0.4652(5)  | 0.035(2) |
| C(16) | 0.5245(6)   | 0.2367(5)  | 0.0967(4)  | 0.015(1) |
| C(17) | 0.4027(6)   | 0.2256(6)  | 0.0760(4)  | 0.017(1) |
| C(18) | 0.3965(6)   | 0.2640(6)  | -0.0045(4) | 0.020(1) |
| C(19) | 0.5073(7)   | 0.3090(6)  | -0.0594(4) | 0.020(1) |
| C(20) | 0.6262(6)   | 0.3206(6)  | -0.0357(4) | 0.022(1) |
| C(21) | 0.6394(6)   | 0.2837(6)  | 0.0427(4)  | 0.017(1) |
| C(22) | 0.2764(7)   | 0.1789(6)  | 0.1371(4)  | 0.022(1) |
| C(23) | 0.1420(7)   | 0.2950(7)  | 0.1550(5)  | 0.033(2) |
| C(24) | 0.2531(7)   | 0.0513(7)  | 0.0992(5)  | 0.030(2) |
| C(25) | 0.7724(6)   | 0.2889(6)  | 0.0671(4)  | 0.020(1) |
| C(26) | 0.8774(7)   | 0.1505(7)  | 0.0456(6)  | 0.039(2) |
| C(27) | 0.8464(7)   | 0.3997(7)  | 0.0227(5)  | 0.028(2) |
| I(2)  | -0.22428(4) | 0.69457(4) | 0.19300(3) | 0.024(1) |

| I(3)   | 0.00868(4) | 0.75069(4) | 0.24538(2) | 0.020(1) |
|--------|------------|------------|------------|----------|
| I(4)   | 0.24481(5) | 0.81179(4) | 0.29950(3) | 0.027(1) |
| H(2A)  | 0.6030     | -0.0211    | 0.3075     | 0.027    |
| H(3A)  | 0.6117     | -0.0176    | 0.1546     | 0.029    |
| H(6A)  | 0.6908     | 0.3096     | 0.5179     | 0.028    |
| H(7A)  | 0.4803     | 0.3030     | 0.6231     | 0.026    |
| H(8A)  | 0.2842     | 0.2621     | 0.5883     | 0.028    |
| H(10A) | 0.7545     | 0.2519     | 0.2929     | 0.025    |
| H(11A) | 0.7252     | 0.4745     | 0.3547     | 0.045    |
| H(11B) | 0.8891     | 0.4070     | 0.3073     | 0.045    |
| H(11C) | 0.8293     | 0.4115     | 0.4086     | 0.045    |
| H(12A) | 0.8622     | 0.0616     | 0.3493     | 0.049    |
| H(12B) | 0.8985     | 0.1561     | 0.4138     | 0.049    |
| H(12C) | 0.9755     | 0.1541     | 0.3140     | 0.049    |
| H(13A) | 0.2737     | 0.1865     | 0.3772     | 0.028    |
| H(14A) | 0.2826     | 0.0045     | 0.4695     | 0.049    |
| H(14B) | 0.1233     | 0.0627     | 0.4665     | 0.049    |
| H(14C) | 0.1699     | 0.1032     | 0.5461     | 0.049    |
| H(15A) | 0.1572     | 0.4114     | 0.4370     | 0.053    |
| H(15B) | 0.0953     | 0.3519     | 0.5268     | 0.053    |
| H(15C) | 0.0442     | 0.3172     | 0.4479     | 0.053    |
| H(18A) | 0.3150     | 0.2589     | -0.0212    | 0.024    |
| H(19A) | 0.5028     | 0.3325     | -0.1144    | 0.023    |
| H(20A) | 0.7000     | 0.3547     | -0.0742    | 0.026    |
| H(22A) | 0.2980     | 0.1576     | 0.1917     | 0.026    |
| H(23A) | 0.0603     | 0.2648     | 0.1929     | 0.049    |
| H(23B) | 0.1228     | 0.3195     | 0.1015     | 0.049    |
| H(23C) | 0.1577     | 0.3743     | 0.1820     | 0.049    |
| H(24A) | 0.3406     | -0.0199    | 0.0865     | 0.044    |
| H(24B) | 0.2284     | 0.0722     | 0.0467     | 0.044    |
| H(24C) | 0.1752     | 0.0197     | 0.1398     | 0.044    |
| H(25A) | 0.7439     | 0.3095     | 0.1298     | 0.024    |
| H(26A) | 0.8304     | 0.0801     | 0.0745     | 0.059    |
| H(26B) | 0.9605     | 0.1532     | 0.0644     | 0.059    |
| H(26C) | 0.9082     | 0.1295     | -0.0158    | 0.059    |
| H(27A) | 0.7762     | 0.4861     | 0.0305     | 0.042    |

| H(27B) | 0.8889 | 0.3735 | -0.0380 | 0.042 |
|--------|--------|--------|---------|-------|
| H(27C) | 0.9214 | 0.4102 | 0.0473  | 0.042 |

Table S15. Anisotropic displacement parameters  $(\text{\AA})^2$  for  $2_1 \cdot I_3$ . The anisotropic displacement factor exponent takes the form:  $-2\pi^2 [\text{ h}^2 a^{*2} \text{ U}_{11} + ... + 2 \text{ h k } a^* \text{ b}^* \text{ U}_{12} ]$ 

|       | $U_{11}$  | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|-------|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|
| I(1)  | 0.0215(2) | 0.0142(2)       | 0.0122(2)       | -0.0009(1)      | -0.0047(1)      | -0.0026(1)      |
| N(1)  | 0.025(3)  | 0.017(2)        | 0.014(3)        | -0.007(2)       | -0.006(2)       | 0.001(2)        |
| N(2)  | 0.023(3)  | 0.023(3)        | 0.012(3)        | -0.003(2)       | -0.009(2)       | -0.005(2)       |
| C(1)  | 0.016(3)  | 0.012(3)        | 0.016(3)        | 0.002(2)        | -0.006(2)       | -0.003(2)       |
| C(2)  | 0.029(3)  | 0.017(3)        | 0.022(4)        | 0.007(3)        | -0.011(3)       | 0.000(3)        |
| C(3)  | 0.034(4)  | 0.017(3)        | 0.021(3)        | -0.005(3)       | -0.009(3)       | -0.004(3)       |
| C(4)  | 0.022(3)  | 0.016(3)        | 0.012(3)        | -0.003(2)       | -0.007(2)       | 0.002(2)        |
| C(5)  | 0.024(3)  | 0.017(3)        | 0.012(3)        | 0.002(2)        | -0.002(2)       | -0.002(2)       |
| C(6)  | 0.028(3)  | 0.024(3)        | 0.017(3)        | -0.002(3)       | -0.008(3)       | -0.002(3)       |
| C(7)  | 0.020(3)  | 0.034(3)        | 0.006(3)        | -0.004(3)       | -0.001(2)       | -0.002(3)       |
| C(8)  | 0.024(3)  | 0.025(3)        | 0.016(3)        | -0.002(3)       | -0.001(3)       | -0.001(3)       |
| C(9)  | 0.026(3)  | 0.020(3)        | 0.013(3)        | 0.001(3)        | -0.009(2)       | -0.006(3)       |
| C(10) | 0.020(3)  | 0.026(3)        | 0.012(3)        | -0.008(3)       | 0.000(2)        | -0.002(3)       |
| C(11) | 0.027(3)  | 0.021(3)        | 0.034(4)        | 0.004(3)        | 0.003(3)        | -0.002(3)       |
| C(12) | 0.031(4)  | 0.025(3)        | 0.035(4)        | 0.004(3)        | -0.001(3)       | -0.003(3)       |
| C(13) | 0.029(3)  | 0.030(3)        | 0.016(3)        | 0.005(3)        | -0.010(3)       | -0.014(3)       |
| C(14) | 0.041(4)  | 0.030(4)        | 0.032(4)        | 0.003(3)        | -0.010(3)       | -0.018(3)       |
| C(15) | 0.032(4)  | 0.033(4)        | 0.046(5)        | 0.012(4)        | -0.017(3)       | -0.012(3)       |
| C(16) | 0.022(3)  | 0.009(2)        | 0.013(3)        | -0.002(2)       | -0.007(2)       | 0.000(2)        |
| C(17) | 0.016(3)  | 0.018(3)        | 0.014(3)        | -0.003(2)       | -0.003(2)       | -0.002(2)       |
| C(18) | 0.017(3)  | 0.023(3)        | 0.016(3)        | -0.001(3)       | -0.003(2)       | -0.002(2)       |
| C(19) | 0.025(3)  | 0.021(3)        | 0.011(3)        | 0.001(3)        | -0.005(2)       | -0.004(3)       |
| C(20) | 0.017(3)  | 0.026(3)        | 0.016(3)        | 0.000(3)        | 0.003(2)        | -0.004(2)       |
| C(21) | 0.016(3)  | 0.016(3)        | 0.016(3)        | -0.003(2)       | -0.002(2)       | 0.001(2)        |
| C(22) | 0.024(3)  | 0.027(3)        | 0.014(3)        | 0.003(3)        | -0.001(2)       | -0.010(3)       |
| C(23) | 0.023(3)  | 0.036(4)        | 0.031(4)        | -0.008(3)       | 0.007(3)        | -0.010(3)       |
| C(24) | 0.028(3)  | 0.025(3)        | 0.038(4)        | 0.006(3)        | -0.009(3)       | -0.012(3)       |
| C(25) | 0.016(3)  | 0.019(3)        | 0.024(3)        | -0.002(3)       | -0.008(2)       | -0.003(2)       |
| C(26) | 0.020(3)  | 0.032(4)        | 0.068(6)        | -0.004(4)       | -0.017(4)       | -0.005(3)       |
| C(27) | 0.020(3)  | 0.026(3)        | 0.036(4)        | -0.005(3)       | -0.005(3)       | -0.007(3)       |

| I(2) | 0.0270(2) | 0.0257(2) | 0.0198(2) | -0.0013(2) | -0.0074(2) | -0.0032(2) |
|------|-----------|-----------|-----------|------------|------------|------------|
| I(3) | 0.0244(2) | 0.0185(2) | 0.0132(2) | -0.0032(2) | -0.0033(1) | -0.0008(2) |
| I(4) | 0.0322(2) | 0.0225(2) | 0.0254(2) | -0.0048(2) | -0.0137(2) | 0.0007(2)  |

#### Table S16. Bond lengths [Å] for $2_{I}$ ·I<sub>3</sub>.

| atom-atom    | distance  | atom-atom    | distance  |
|--------------|-----------|--------------|-----------|
| I(1)-C(1)    | 2.071(5)  | N(1)-C(1)    | 1.345(8)  |
| N(1)-C(2)    | 1.388(8)  | N(1)-C(4)    | 1.456(7)  |
| N(2)-C(1)    | 1.343(7)  | N(2)-C(3)    | 1.369(8)  |
| N(2)-C(16)   | 1.470(8)  | C(2)-C(3)    | 1.369(9)  |
| C(4)-C(5)    | 1.389(8)  | C(4)-C(9)    | 1.402(8)  |
| C(5)-C(6)    | 1.401(8)  | C(5)-C(10)   | 1.521(8)  |
| C(6)-C(7)    | 1.384(9)  | C(7)-C(8)    | 1.386(9)  |
| C(8)-C(9)    | 1.399(8)  | C(9)-C(13)   | 1.528(8)  |
| C(10)-C(12)  | 1.514(9)  | C(10)-C(11)  | 1.529(8)  |
| C(13)-C(14)  | 1.530(8)  | C(13)-C(15)  | 1.539(9)  |
| C(16)-C(17)  | 1.392(8)  | C(16)-C(21)  | 1.406(8)  |
| C(17)-C(18)  | 1.400(9)  | C(17)-C(22)  | 1.532(8)  |
| C(18)-C(19)  | 1.374(8)  | C(19)-C(20)  | 1.390(9)  |
| C(20)-C(21)  | 1.382(9)  | C(21)-C(25)  | 1.518(8)  |
| C(22)-C(24)  | 1.524(8)  | C(22)-C(23)  | 1.544(9)  |
| C(25)-C(26)  | 1.533(9)  | C(25)-C(27)  | 1.538(8)  |
| I(2)-I(3)    | 2.8847(5) | I(3)-I(4)    | 2.9491(6) |
| C(2)-H(2A)   | 0.9500    | C(3)-H(3A)   | 0.9500    |
| C(6)-H(6A)   | 0.9500    | C(7)-H(7A)   | 0.9500    |
| C(8)-H(8A)   | 0.9500    | C(10)-H(10A) | 1.0000    |
| C(11)-H(11A) | 0.9800    | C(11)-H(11B) | 0.9800    |
| C(11)-H(11C) | 0.9800    | C(12)-H(12A) | 0.9800    |
| C(12)-H(12B) | 0.9800    | C(12)-H(12C) | 0.9800    |
| C(13)-H(13A) | 1.0000    | C(14)-H(14A) | 0.9800    |
| C(14)-H(14B) | 0.9800    | C(14)-H(14C) | 0.9800    |
| C(15)-H(15A) | 0.9800    | C(15)-H(15B) | 0.9800    |
| C(15)-H(15C) | 0.9800    | C(18)-H(18A) | 0.9500    |
| C(19)-H(19A) | 0.9500    | C(20)-H(20A) | 0.9500    |
| C(22)-H(22A) | 1.0000    | C(23)-H(23A) | 0.9800    |
| C(23)-H(23B) | 0.9800    | C(23)-H(23C) | 0.9800    |
| C(24)-H(24A) | 0.9800    | C(24)-H(24B) | 0.9800    |
| C(24)-H(24C) | 0.9800    | C(25)-H(25A) | 1.0000    |
| C(26)-H(26A) | 0.9800    | C(26)-H(26B) | 0.9800    |
| C(26)-H(26C) | 0.9800    | C(27)-H(27A) | 0.9800    |
| C(27)-H(27B) | 0.9800    | C(27)-H(27C) | 0.9800    |

Table S17. Bond angles [°] for  $2_{I}$ ·I<sub>3</sub>.

| atom-atom-atom      | angle           | atom-atom-atom      | angle           |
|---------------------|-----------------|---------------------|-----------------|
| C(1)-N(1)-C(2)      | 109.3(5)        | C(1)-N(1)-C(4)      | 126.9(5)        |
| C(2)-N(1)-C(4)      | 123.7(5)        | C(1)-N(2)-C(3)      | 110.3(5)        |
| C(1)-N(2)-C(16)     | 125.9(5)        | C(3)-N(2)-C(16)     | 123.7(5)        |
| N(2)-C(1)-N(1)      | 107.0(5)        | N(2)-C(1)-I(1)      | 127.3(4)        |
| N(1)-C(1)-I(1)      | 125.6(4)        | C(3)-C(2)-N(1)      | 106.7(6)        |
| C(2)-C(3)-N(2)      | 106.7(5)        | C(5)-C(4)-C(9)      | 124.2(6)        |
| C(5)-C(4)-N(1)      | 118.2(5)        | C(9)-C(4)-N(1)      | 117.5(5)        |
| C(4)-C(5)-C(6)      | 116.7(6)        | C(4)-C(5)-C(10)     | 123.7(6)        |
| C(6)-C(5)-C(10)     | 119.6(6)        | C(7)-C(6)-C(5)      | 120.9(6)        |
| C(6)-C(7)-C(8)      | 120.7(6)        | C(7)-C(8)-C(9)      | 120.8(6)        |
| C(8)-C(9)-C(4)      | 116.6(6)        | C(8)-C(9)-C(13)     | 119.2(6)        |
| C(4)-C(9)-C(13)     | 124.1(6)        | C(12)-C(10)-C(5)    | 111.3(6)        |
| C(12)-C(10)-C(11)   | 111.1(5)        | C(5)-C(10)-C(11)    | 110.1(5)        |
| C(9)-C(13)-C(14)    | 110.0(6)        | C(9)-C(13)-C(15)    | 111.1(5)        |
| C(14)-C(13)-C(15)   | 110.7(6)        | C(17)-C(16)-C(21)   | 124.4(6)        |
| C(17)-C(16)-N(2)    | 117.5(5)        | C(21)-C(16)-N(2)    | 118.1(5)        |
| C(16)-C(17)-C(18)   | 116.8(5)        | C(16)-C(17)-C(22)   | 123.5(6)        |
| C(18)-C(17)-C(22)   | 119.7(5)        | C(19)-C(18)-C(17)   | 120.5(6)        |
| C(18)-C(19)-C(20)   | 120.9(6)        | C(21)-C(20)-C(19)   | 121.6(6)        |
| C(20)-C(21)-C(16)   | 115.8(5)        | C(20)-C(21)-C(25)   | 121.8(5)        |
| C(16)-C(21)-C(25)   | 122.3(6)        | C(24)-C(22)-C(17)   | 110.1(5)        |
| C(24)-C(22)-C(23)   | 110.9(5)        | C(17)-C(22)-C(23)   | 109.1(5)        |
| C(21)-C(25)-C(26)   | 110.0(5)        | C(21)-C(25)-C(27)   | 112.2(5)        |
| C(26)-C(25)-C(27)   | 109.5(5)        | I(2)-I(3)-I(4)      | 179.251(18)     |
|                     | C(3)-C(2)-H(2A) | 126.7               | N(1)-C(2)-H(2A) |
|                     | 126.7           | C(2)-C(3)-H(3A)     | 126.7           |
| N(2)-C(3)-H(3A)     | 126.7           | C(7)-C(6)-H(6A)     | 119.6           |
| C(5)-C(6)-H(6A)     | 119.6           | C(6)-C(7)-H(7A)     | 119.6           |
| C(8)-C(7)-H(7A)     | 119.6           | C(7)-C(8)-H(8A)     | 119.6           |
| C(9)-C(8)-H(8A)     | 119.6           | C(12)-C(10)-H(10A)  | 108.1           |
| C(5)-C(10)-H(10A)   | 108.1           | C(11)-C(10)-H(10A)  | 108.1           |
| C(10)-C(11)-H(11A)  | 109.5           | C(10)-C(11)-H(11B)  | 109.5           |
| H(11A)-C(11)-H(11B) | 109.5           | C(10)-C(11)-H(11C)  | 109.5           |
| H(11A)-C(11)-H(11C) | 109.5           | H(11B)-C(11)-H(11C) | 109.5           |
| C(10)-C(12)-H(12A)  | 109.5           | C(10)-C(12)-H(12B)  | 109.5           |
| H(12A)-C(12)-H(12B) | 109.5           | C(10)-C(12)-H(12C)  | 109.5           |
| H(12A)-C(12)-H(12C) | 109.5           | H(12B)-C(12)-H(12C) | 109.5           |
| C(9)-C(13)-H(13A)   | 108.3           | C(14)-C(13)-H(13A)  | 108.3           |
| C(15)-C(13)-H(13A)  | 108.3           | C(13)-C(14)-H(14A)  | 109.5           |
| C(13)-C(14)-H(14B)  | 109.5           | H(14A)-C(14)-H(14B) | 109.5           |
| C(13)-C(14)-H(14C)  | 109.5           | H(14A)-C(14)-H(14C) | 109.5           |
| H(14B)-C(14)-H(14C) | 109.5           | C(13)-C(15)-H(15A)  | 109.5           |
|                     |                 |                     |                 |

| C(13)-C(15)-H(15B)  | 109.5 | H(15A)-C(15)-H(15B) | 109.5 |
|---------------------|-------|---------------------|-------|
| C(13)-C(15)-H(15C)  | 109.5 | H(15A)-C(15)-H(15C) | 109.5 |
| H(15B)-C(15)-H(15C) | 109.5 | C(19)-C(18)-H(18A)  | 119.8 |
| C(17)-C(18)-H(18A)  | 119.8 | C(18)-C(19)-H(19A)  | 119.6 |
| C(20)-C(19)-H(19A)  | 119.6 | C(21)-C(20)-H(20A)  | 119.2 |
| C(19)-C(20)-H(20A)  | 119.2 | C(24)-C(22)-H(22A)  | 108.9 |
| C(17)-C(22)-H(22A)  | 108.9 | C(23)-C(22)-H(22A)  | 108.9 |
| C(22)-C(23)-H(23A)  | 109.5 | C(22)-C(23)-H(23B)  | 109.5 |
| H(23A)-C(23)-H(23B) | 109.5 | C(22)-C(23)-H(23C)  | 109.5 |
| H(23A)-C(23)-H(23C) | 109.5 | H(23B)-C(23)-H(23C) | 109.5 |
| C(22)-C(24)-H(24A)  | 109.5 | C(22)-C(24)-H(24B)  | 109.5 |
| H(24A)-C(24)-H(24B) | 109.5 | C(22)-C(24)-H(24C)  | 109.5 |
| H(24A)-C(24)-H(24C) | 109.5 | H(24B)-C(24)-H(24C) | 109.5 |
| C(21)-C(25)-H(25A)  | 108.3 | C(26)-C(25)-H(25A)  | 108.3 |
| C(27)-C(25)-H(25A)  | 108.3 | C(25)-C(26)-H(26A)  | 109.5 |
| C(25)-C(26)-H(26B)  | 109.5 | H(26A)-C(26)-H(26B) | 109.5 |
| C(25)-C(26)-H(26C)  | 109.5 | H(26A)-C(26)-H(26C) | 109.5 |
| H(26B)-C(26)-H(26C) | 109.5 | C(25)-C(27)-H(27A)  | 109.5 |
| C(25)-C(27)-H(27B)  | 109.5 | H(27A)-C(27)-H(27B) | 109.5 |
| С(25)-С(27)-Н(27С)  | 109.5 | H(27A)-C(27)-H(27C) | 109.5 |
| H(27B)-C(27)-H(27C) | 109.5 |                     |       |
|                     |       |                     |       |

Table S18. Torsion angles [°] for  $2_{I}$ ·I<sub>3</sub>.

| atom-atom-atom      | angle      | atom-atom-atom-atom  | angle     |
|---------------------|------------|----------------------|-----------|
| C(3)-N(2)-C(1)-N(1) | 1.0(7)     | C(16)-N(2)-C(1)-N(1) | 179.9(5)  |
|                     | C(3)-N(2)  | -C(1)-I(1)           | -175.5(4) |
|                     | C(16)-N(2) | -C(1)-I(1)           | 3.4(8)    |
|                     | C(2)-N(1)  | -C(1)-N(2)           | -0.7(7)   |
|                     | C(4)-N(1)  | -C(1)-N(2)           | 176.9(5)  |
|                     | C(2)-N(1)  | -C(1)-I(1)           | 175.9(4)  |
|                     | C(4)-N(1)  | -C(1)-I(1)           | -6.5(8)   |
|                     | C(1)-N(1)  | -C(2)-C(3)           | 0.2(7)    |
|                     | C(4)-N(1)  | -C(2)-C(3)           | -177.5(5) |
|                     | N(1)-C(2)  | -C(3)-N(2)           | 0.4(7)    |
|                     | C(1)-N(2)  | -C(3)-C(2)           | -0.9(7)   |
|                     | C(16)-N(2) | -C(3)-C(2)           | -179.8(5) |
|                     | C(1)-N(1)  | -C(4)-C(5)           | -90.8(7)  |
|                     | C(2)-N(1)  | -C(4)-C(5)           | 86.5(7)   |
|                     | C(1)-N(1)  | -C(4)-C(9)           | 93.2(7)   |
|                     | C(2)-N(1)  | -C(4)-C(9)           | -89.6(7)  |
|                     | C(9)-C(4)  | -C(5)-C(6)           | 1.4(9)    |
|                     | N(1)-C(4)  | -C(5)-C(6)           | -174.3(5) |
|                     | C(9)-C(4)  | -C(5)-C(10)          | -179.0(6) |
|                     | N(1)-C(4)  | -C(5)-C(10)          | 5.3(9)    |
|                     | C(4)-C(5)  | -C(6)-C(7)           | 0.0(9)    |
|                     | C(10)-C(5) | -C(6)-C(7)           | -179.6(6) |
|                     | C(5)-C(6)  | -C(7)-C(8)           | -1.8(10)  |
|                     | C(6)-C(7)  | -C(8)-C(9)           | 2.3(10)   |
|                     | C(7)-C(8)  | -C(9)-C(4)           | -0.9(9)   |
|                     | C(7)-C(8)  | -C(9)-C(13)          | -178.2(6) |
|                     | C(5)-C(4)  | -C(9)-C(8)           | -0.9(9)   |
|                     | N(1)-C(4)  | -C(9)-C(8)           | 174.8(5)  |
|                     | C(5)-C(4)  | -C(9)-C(13)          | 176.2(6)  |
|                     | N(1)-C(4)  | -C(9)-C(13)          | -8.0(9)   |
|                     | C(4)-C(5)  | -C(10)-C(12)         | -112.0(7) |
|                     | C(6)-C(5)  | -C(10)-C(12)         | 67.6(8)   |
|                     | C(4)-C(5)  | -C(10)-C(11)         | 124.3(7)  |
|                     | C(6)-C(5)  | -C(10)-C(11)         | -56.1(8)  |
|                     | C(8)-C(9)  | -C(13)-C(14)         | -61.5(8)  |
|                     | C(4)-C(9)  | -C(13)-C(14)         | 121.5(7)  |
|                     | C(8)-C(9)  | -C(13)-C(15)         | 61.5(8)   |
|                     | C(4)-C(9)  | -C(13)-C(15)         | -115.6(7) |
|                     | C(1)-N(2)  | -C(16)-C(17)         | -96.2(7)  |
|                     | C(3)-N(2)  | -C(16)-C(17)         | 82.5(7)   |
|                     | C(1)-N(2)  | -C(16)-C(21)         | 86.0(7)   |
|                     | C(3)-N(2)  | -C(16)-C(21)         | -95.3(7)  |
| C(21)-C(16)-C(17)-C(18) | 0.2(9)    |
|-------------------------|-----------|
| N(2)-C(16)-C(17)-C(18)  | -177.4(5) |
| C(21)-C(16)-C(17)-C(22) | -177.7(5) |
| N(2)-C(16)-C(17)-C(22)  | 4.6(8)    |
| C(16)-C(17)-C(18)-C(19) | 0.5(9)    |
| C(22)-C(17)-C(18)-C(19) | 178.6(6)  |
| C(17)-C(18)-C(19)-C(20) | -1.6(9)   |
| C(18)-C(19)-C(20)-C(21) | 2.0(10)   |
| C(19)-C(20)-C(21)-C(16) | -1.1(9)   |
| C(19)-C(20)-C(21)-C(25) | 176.6(5)  |
| C(17)-C(16)-C(21)-C(20) | 0.1(9)    |
| N(2)-C(16)-C(21)-C(20)  | 177.7(5)  |
| C(17)-C(16)-C(21)-C(25) | -177.7(5) |
| N(2)-C(16)-C(21)-C(25)  | 0.0(8)    |
| C(16)-C(17)-C(22)-C(24) | -120.2(6) |
| C(18)-C(17)-C(22)-C(24) | 61.9(8)   |
| C(16)-C(17)-C(22)-C(23) | 118.0(6)  |
| C(18)-C(17)-C(22)-C(23) | -59.9(7)  |
| C(20)-C(21)-C(25)-C(26) | -92.7(7)  |
| C(16)-C(21)-C(25)-C(26) | 84.9(7)   |
| C(20)-C(21)-C(25)-C(27) | 29.5(8)   |
| C(16)-C(21)-C(25)-C(27) | -152.9(6) |
|                         |           |





| Empirical formula                        | $C_{28}H_{36}CuF_3N_2O_3S$                              |          |
|------------------------------------------|---------------------------------------------------------|----------|
| Formula weight                           | 601.19                                                  |          |
| Temperature                              | 100(2) K                                                |          |
| Wavelength                               | 0.71073 Å                                               |          |
| Crystal system                           | orthorhombic                                            |          |
| Space group                              | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub>           |          |
| Unit cell dimensions                     | $a = 10.4856(4)$ Å $\alpha =$                           | = 90°    |
|                                          | $b = 14.0928(5)$ Å $\beta =$                            | = 90°    |
|                                          | $c = 20.2195(7)$ Å $\gamma =$                           | = 90°    |
| Volume                                   | 2987.87(19) Å <sup>3</sup>                              |          |
| Ζ                                        | 4                                                       |          |
| Density (calculated)                     | $1.336 \text{ g.cm}^{-3}$                               |          |
| Absorption coefficient ( $\mu$ )         | 0.850 mm <sup>-1</sup>                                  |          |
| F(000)                                   | 1256                                                    |          |
| Crystal size                             | $0.27 \times 0.15 \times 0.10 \text{ mm}^3$             |          |
| $\theta$ range for data collection       | 1.76 to 28.11°                                          |          |
| Index ranges                             | $-13 \le h \le 13, -18 \le k \le 18, -26 \le l \le 26$  |          |
| Reflections collected                    | 50329                                                   |          |
| Independent reflections                  | 7256 $[R_{int} = 0.0530]$                               |          |
| Completeness to $\theta = 28.11^{\circ}$ | 99.6 %                                                  |          |
| Absorption correction                    | Empiricial                                              |          |
| Max. and min. transmission               | 0.9198 and 0.8030                                       |          |
| Refinement method                        | Full-matrix least-squares                               | on $F^2$ |
| Data / restraints / parameters           | 7256 / 0 / 351                                          |          |
| Goodness-of-fit on $F^2$                 | 1.070                                                   |          |
| Final R indices $[I \ge 2\sigma(I)]$     | $R_1 = 0.0333, wR_2 = 0.0689$                           |          |
| R indices (all data)                     | $R_1 = 0.0426, wR_2 = 0.0721$                           |          |
| Absolute structure parameter             | -0.004(8)                                               |          |
| Largest diff. peak and hole              | $0.270 \text{ and } -0.325 \text{ e}^{-}.\text{Å}^{-3}$ |          |

Table S19. Crystal data and structure refinement for  $IPrCu(CF_3SO_3)$ .

Table S20. Atomic coordinates and equivalent isotropic displacement parameters (Å<sup>2</sup>) for IPrCu(CF<sub>3</sub>SO<sub>3</sub>). U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|       | Х           | У           | Ζ           | U(eq)    |
|-------|-------------|-------------|-------------|----------|
| Cu(1) | 0.60443(2)  | 0.53807(2)  | 0.97853(1)  | 0.019(1) |
| S(1)  | 0.64954(5)  | 0.44091(4)  | 1.10440(2)  | 0.020(1) |
| F(1)  | 0.58311(13) | 0.52828(10) | 1.21322(6)  | 0.034(1) |
| F(2)  | 0.43102(12) | 0.45148(10) | 1.16630(7)  | 0.039(1) |
| F(3)  | 0.57766(15) | 0.37566(10) | 1.21889(6)  | 0.040(1) |
| O(1)  | 0.61260(15) | 0.53069(10) | 1.07105(6)  | 0.025(1) |
| O(2)  | 0.77868(14) | 0.44183(12) | 1.12738(7)  | 0.029(1) |
| O(3)  | 0.60488(18) | 0.35790(11) | 1.07163(7)  | 0.030(1) |
| N(1)  | 0.62754(14) | 0.46433(12) | 0.84724(8)  | 0.014(1) |
| N(2)  | 0.59181(16) | 0.61351(12) | 0.84298(8)  | 0.015(1) |
| C(1)  | 0.60625(19) | 0.54080(15) | 0.88623(9)  | 0.017(1) |
| C(2)  | 0.6254(2)   | 0.48859(15) | 0.78086(10) | 0.020(1) |
| C(3)  | 0.6034(2)   | 0.58216(15) | 0.77803(9)  | 0.020(1) |
| C(4)  | 0.64160(19) | 0.36806(15) | 0.87136(9)  | 0.016(1) |
| C(5)  | 0.76456(19) | 0.33505(15) | 0.88546(10) | 0.018(1) |
| C(6)  | 0.7751(2)   | 0.24000(16) | 0.90531(11) | 0.023(1) |
| C(7)  | 0.6681(2)   | 0.18361(17) | 0.91038(11) | 0.026(1) |
| C(8)  | 0.5477(2)   | 0.21896(16) | 0.89710(11) | 0.024(1) |
| C(9)  | 0.53177(19) | 0.31340(16) | 0.87801(10) | 0.019(1) |
| C(10) | 0.8807(2)   | 0.39832(16) | 0.88097(10) | 0.022(1) |
| C(11) | 0.9271(2)   | 0.42632(19) | 0.95032(11) | 0.035(1) |
| C(12) | 0.9889(2)   | 0.35330(17) | 0.84153(12) | 0.028(1) |
| C(13) | 0.3998(2)   | 0.35542(16) | 0.86664(10) | 0.022(1) |
| C(14) | 0.3314(2)   | 0.30715(19) | 0.80982(11) | 0.033(1) |
| C(15) | 0.3225(2)   | 0.35237(18) | 0.93067(11) | 0.030(1) |
| C(16) | 0.5671(2)   | 0.71007(15) | 0.86232(9)  | 0.017(1) |
| C(17) | 0.4404(2)   | 0.74196(16) | 0.86033(10) | 0.020(1) |
| C(18) | 0.4186(2)   | 0.83625(16) | 0.87935(10) | 0.023(1) |
| C(19) | 0.5180(2)   | 0.89401(17) | 0.89877(11) | 0.026(1) |
| C(20) | 0.6420(2)   | 0.85990(16) | 0.89986(11) | 0.023(1) |
| C(21) | 0.6697(2)   | 0.76706(16) | 0.88122(10) | 0.020(1) |
| C(22) | 0.3310(2)   | 0.67928(16) | 0.83813(11) | 0.023(1) |
| C(23) | 0.2398(2)   | 0.6567(2)   | 0.89499(13) | 0.041(1) |
| C(24) | 0.2586(2)   | 0.72246(19) | 0.78014(12) | 0.036(1) |
| C(25) | 0.8060(2)   | 0.73017(17) | 0.88126(11) | 0.023(1) |
| C(26) | 0.8554(2)   | 0.7149(2)   | 0.95169(12) | 0.041(1) |
| C(27) | 0.8967(2)   | 0.79498(19) | 0.84348(12) | 0.036(1) |
| C(28) | 0.5542(2)   | 0.45021(17) | 1.17944(11) | 0.026(1) |
| H(2A) | 0.6373      | 0.4470      | 0.7444      | 0.024    |
| H(3A) | 0.5969      | 0.6198      | 0.7392      | 0.023    |

| H(6A)  | 0.8565 | 0.2143 | 0.9153 | 0.028 |
|--------|--------|--------|--------|-------|
| H(7A)  | 0.6773 | 0.1191 | 0.9233 | 0.032 |
| H(8A)  | 0.4754 | 0.1787 | 0.9010 | 0.029 |
| H(10Å) | 0.8547 | 0.4578 | 0.8576 | 0.026 |
| H(11A) | 0.8580 | 0.4581 | 0.9742 | 0.052 |
| H(11B) | 1.0001 | 0.4694 | 0.9464 | 0.052 |
| H(11C) | 0.9530 | 0.3693 | 0.9746 | 0.052 |
| H(12A) | 0.9560 | 0.3306 | 0.7990 | 0.041 |
| H(12B) | 1.0243 | 0.2998 | 0.8664 | 0.041 |
| H(12C) | 1.0558 | 0.4006 | 0.8338 | 0.041 |
| H(13A) | 0.4114 | 0.4236 | 0.8544 | 0.026 |
| H(14A) | 0.3864 | 0.3072 | 0.7706 | 0.049 |
| H(14B) | 0.2523 | 0.3415 | 0.8000 | 0.049 |
| H(14C) | 0.3111 | 0.2416 | 0.8221 | 0.049 |
| H(15A) | 0.3716 | 0.3819 | 0.9664 | 0.045 |
| H(15B) | 0.3040 | 0.2862 | 0.9422 | 0.045 |
| H(15C) | 0.2423 | 0.3870 | 0.9245 | 0.045 |
| H(18A) | 0.3342 | 0.8607 | 0.8788 | 0.028 |
| H(19A) | 0.5013 | 0.9577 | 0.9115 | 0.032 |
| H(20A) | 0.7092 | 0.9006 | 0.9136 | 0.028 |
| H(22A) | 0.3684 | 0.6179 | 0.8227 | 0.028 |
| H(23A) | 0.2865 | 0.6243 | 0.9304 | 0.062 |
| H(23B) | 0.1712 | 0.6155 | 0.8789 | 0.062 |
| H(23C) | 0.2032 | 0.7157 | 0.9121 | 0.062 |
| H(24A) | 0.3173 | 0.7325 | 0.7431 | 0.054 |
| H(24B) | 0.2217 | 0.7834 | 0.7936 | 0.054 |
| H(24C) | 0.1903 | 0.6793 | 0.7665 | 0.054 |
| H(25A) | 0.8060 | 0.6671 | 0.8585 | 0.028 |
| H(26A) | 0.9403 | 0.6860 | 0.9500 | 0.061 |
| H(26B) | 0.7970 | 0.6728 | 0.9756 | 0.061 |
| H(26C) | 0.8604 | 0.7761 | 0.9746 | 0.061 |
| H(27A) | 0.8635 | 0.8056 | 0.7988 | 0.054 |
| H(27B) | 0.9809 | 0.7651 | 0.8408 | 0.054 |
| H(27C) | 0.9038 | 0.8559 | 0.8666 | 0.054 |

Table S21. Anisotropic displacement parameters (Å<sup>2</sup>) for IPrCu(CF<sub>3</sub>SO<sub>3</sub>). The anisotropic displacement factor exponent takes the form:  $-2\pi^{2}[h^{2} a^{*2}U_{11} + ... + 2hka^{*}b^{*}U_{12}]$ 

|                 | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Cu(1)           | 0.0248(1)       | 0.0198(1)       | 0.0137(1)       | 0.0012(1)       | 0.0001(1)       | 0.0021(1)       |
| S(1)            | 0.0253(3)       | 0.0179(3)       | 0.0162(2)       | 0.0012(2)       | 0.0005(2)       | 0.0005(2)       |
| $\mathbf{F}(1)$ | 0.0467(9)       | 0.0336(8)       | 0.0204(6)       | -0.0073(6)      | 0.0010(6)       | 0.0046(7)       |
| F(2)            | 0.0255(7)       | 0.0458(9)       | 0.0454(8)       | 0.0009(8)       | 0.0071(6)       | -0.0029(7)      |
| F(3)            | 0.0578(10)      | 0.0336(8)       | 0.0277(7)       | 0.0143(7)       | 0.0101(7)       | 0.0053(8)       |
| O(1)            | 0.0418(9)       | 0.0179(8)       | 0.0140(7)       | 0.0028(6)       | 0.0008(7)       | 0.0047(9)       |
| O(2)            | 0.0224(8)       | 0.0346(10)      | 0.0290(9)       | 0.0048(8)       | 0.0013(7)       | 0.0006(7)       |
| O(3)            | 0.0447(10)      | 0.0195(8)       | 0.0267(8)       | -0.0057(7)      | -0.0017(8)      | -0.0002(8)      |
| N(1)            | 0.0169(9)       | 0.0136(9)       | 0.0129(7)       | 0.0027(7)       | 0.0004(6)       | 0.0008(8)       |
| N(2)            | 0.0198(9)       | 0.0129(9)       | 0.0125(8)       | 0.0005(7)       | -0.0011(7)      | 0.0007(8)       |
| C(1)            | 0.0127(9)       | 0.0190(11)      | 0.0182(9)       | 0.0030(9)       | -0.0001(8)      | 0.0013(10)      |
| C(2)            | 0.0245(12)      | 0.0226(12)      | 0.0125(9)       | -0.0014(9)      | 0.0024(9)       | 0.0015(9)       |
| C(3)            | 0.0264(11)      | 0.0198(11)      | 0.0124(9)       | 0.0009(8)       | 0.0013(9)       | 0.0009(10)      |
| C(4)            | 0.0192(11)      | 0.0164(11)      | 0.0125(9)       | 0.0009(8)       | 0.0016(8)       | 0.0016(9)       |
| C(5)            | 0.0190(11)      | 0.0187(12)      | 0.0161(10)      | 0.0007(9)       | 0.0001(8)       | 0.0034(9)       |
| C(6)            | 0.0259(12)      | 0.0220(12)      | 0.0217(11)      | 0.0052(10)      | -0.0007(9)      | 0.0038(10)      |
| C(7)            | 0.0344(14)      | 0.0201(12)      | 0.0251(12)      | 0.0056(10)      | 0.0010(10)      | 0.0024(11)      |
| C(8)            | 0.0281(12)      | 0.0210(12)      | 0.0236(12)      | 0.0036(10)      | 0.0007(10)      | -0.0065(10)     |
| C(9)            | 0.0171(11)      | 0.0232(13)      | 0.0157(10)      | -0.0011(9)      | 0.0015(8)       | -0.0012(9)      |
| C(10)           | 0.0181(11)      | 0.0228(12)      | 0.0238(11)      | 0.0036(9)       | -0.0007(9)      | 0.0043(10)      |
| C(11)           | 0.0240(13)      | 0.0502(17)      | 0.0296(12)      | -0.0097(12)     | -0.0009(10)     | -0.0080(12)     |
| C(12)           | 0.0211(11)      | 0.0311(14)      | 0.0305(13)      | 0.0011(11)      | 0.0028(10)      | 0.0045(10)      |
| C(13)           | 0.0170(10)      | 0.0242(12)      | 0.0232(11)      | -0.0010(9)      | 0.0021(9)       | 0.0010(10)      |
| C(14)           | 0.0261(13)      | 0.0452(16)      | 0.0270(13)      | -0.0115(12)     | -0.0014(10)     | 0.0070(12)      |
| C(15)           | 0.0227(12)      | 0.0401(15)      | 0.0266(12)      | -0.0052(11)     | 0.0024(10)      | 0.0003(11)      |
| C(16)           | 0.0235(11)      | 0.0148(11)      | 0.0133(10)      | 0.0031(8)       | 0.0006(8)       | 0.0000(9)       |
| C(17)           | 0.0221(11)      | 0.0209(12)      | 0.0154(10)      | 0.0033(9)       | 0.0012(8)       | 0.0021(9)       |
| C(18)           | 0.0241(12)      | 0.0239(13)      | 0.0222(11)      | 0.0037(9)       | 0.0023(9)       | 0.0045(10)      |
| C(19)           | 0.0382(14)      | 0.0169(12)      | 0.0243(12)      | -0.0016(10)     | 0.0052(11)      | 0.0030(10)      |
| C(20)           | 0.0289(12)      | 0.0184(12)      | 0.0229(11)      | -0.0029(10)     | 0.0018(10)      | -0.0053(9)      |
| C(21)           | 0.0198(11)      | 0.0233(13)      | 0.0164(10)      | 0.0007(9)       | 0.0009(9)       | -0.0019(10)     |
| C(22)           | 0.0192(12)      | 0.0238(13)      | 0.0276(12)      | 0.0004(10)      | -0.0041(9)      | 0.0001(10)      |
| C(23)           | 0.0354(15)      | 0.0515(18)      | 0.0368(15)      | 0.0062(14)      | -0.0008(12)     | -0.0181(13)     |
| C(24)           | 0.0307(14)      | 0.0429(16)      | 0.0334(14)      | 0.0047(13)      | -0.0101(11)     | -0.0046(12)     |
| C(25)           | 0.0189(11)      | 0.0250(13)      | 0.0262(12)      | -0.0027(10)     | -0.0004(9)      | -0.0002(10)     |
| C(26)           | 0.0271(13)      | 0.063(2)        | 0.0319(13)      | 0.0122(13)      | -0.0036(11)     | 0.0024(13)      |
| C(27)           | 0.0239(12)      | 0.0500(17)      | 0.0336(13)      | 0.0060(12)      | 0.0045(12)      | -0.0029(13)     |
| C(28)           | 0.0305(12)      | 0.0241(13)      | 0.0245(11)      | 0.0005(10)      | 0.0025(9)       | 0.0009(11)      |

| atom-atom    | distance   | atom-atom     | distance   |
|--------------|------------|---------------|------------|
| Cu(1)-C(1)   | 1.8669(19) | Cu(1)-O(1)    | 1.8754(13) |
| S(1)-O(3)    | 1.4235(16) | S(1)-O(2)     | 1.4317(16) |
| S(1)-O(1)    | 1.4852(15) | S(1)-C(28)    | 1.822(2)   |
| F(1)-C(28)   | 1.330(3)   | F(2)-C(28)    | 1.319(3)   |
| F(3)-C(28)   | 1.342(3)   | N(1)-C(1)     | 1.354(3)   |
| N(1)-C(2)    | 1.385(2)   | N(1)-C(4)     | 1.449(3)   |
| N(2)-C(1)    | 1.355(2)   | N(2)-C(3)     | 1.391(2)   |
| N(2)-C(16)   | 1.439(3)   | C(2)-C(3)     | 1.340(3)   |
| C(4)-C(9)    | 1.392(3)   | C(4)-C(5)     | 1.400(3)   |
| C(5)-C(6)    | 1.403(3)   | C(5)-C(10)    | 1.512(3)   |
| C(6)-C(7)    | 1.378(3)   | C(7)-C(8)     | 1.384(3)   |
| C(8)-C(9)    | 1.396(3)   | C(9)-C(13)    | 1.522(3)   |
| C(10)-C(12)  | 1.525(3)   | C(10)-C(11)   | 1.536(3)   |
| C(13)-C(14)  | 1.516(3)   | C(13)-C(15)   | 1.528(3)   |
| C(16)-C(21)  | 1.395(3)   | C(16)-C(17)   | 1.404(3)   |
| C(17)-C(18)  | 1.402(3)   | C(17)-C(22)   | 1.516(3)   |
| C(18)-C(19)  | 1.379(3)   | C(19)-C(20)   | 1.386(3)   |
| C(20)-C(21)  | 1.392(3)   | C(21)-C(25)   | 1.522(3)   |
| C(22)-C(24)  | 1.524(3)   | C(22)-C(23)   | 1.529(3)   |
| C(25)-C(27)  | 1.523(3)   | C(25)-C(26)   | 1.530(3)   |
| C(2)-H(2A)   | 0.9500     | C(3)- $H(3A)$ | 0.9500     |
| C(6)-H(6A)   | 0.9500     | C(7)-H(7A)    | 0.9500     |
| C(8)-H(8A)   | 0.9500     | C(10)-H(10A)  | 1.0000     |
| C(11)-H(11A) | 0.9800     | C(11)-H(11B)  | 0.9800     |
| C(11)-H(11C) | 0.9800     | C(12)-H(12A)  | 0.9800     |
| C(12)-H(12B) | 0.9800     | C(12)-H(12C)  | 0.9800     |
| C(13)-H(13A) | 1.0000     | C(14)-H(14A)  | 0.9800     |
| C(14)-H(14B) | 0.9800     | C(14)-H(14C)  | 0.9800     |
| C(15)-H(15A) | 0.9800     | C(15)-H(15B)  | 0.9800     |
| C(15)-H(15C) | 0.9800     | C(18)-H(18A)  | 0.9500     |
| C(19)-H(19A) | 0.9500     | C(20)-H(20A)  | 0.9500     |
| C(22)-H(22A) | 1.0000     | C(23)-H(23A)  | 0.9800     |
| C(23)-H(23B) | 0.9800     | C(23)-H(23C)  | 0.9800     |
| C(24)-H(24A) | 0.9800     | C(24)-H(24B)  | 0.9800     |
| C(24)-H(24C) | 0.9800     | C(25)-H(25A)  | 1.0000     |
| C(26)-H(26A) | 0.9800     | C(26)-H(26B)  | 0.9800     |
| C(26)-H(26C) | 0.9800     | C(27)-H(27A)  | 0.9800     |
| C(2/)-H(2/B) | 0.9800     | C(2/)-H(2/C)  | 0.9800     |

# Table S22. Bond lengths [Å] for IPrCu(CF<sub>3</sub>SO<sub>3</sub>).

| atom-atom-atom      | angle      | atom-atom-atom      | angle      |
|---------------------|------------|---------------------|------------|
| C(1)-Cu(1)-O(1)     | 176.22(8)  | O(3)-S(1)-O(2)      | 118.01(11) |
| O(3)-S(1)-O(1)      | 113.76(9)  | O(2)-S(1)-O(1)      | 112.72(10) |
| O(3)-S(1)-C(28)     | 105.44(11) | O(2)-S(1)-C(28)     | 104.37(10) |
| O(1)-S(1)-C(28)     | 100.00(10) | S(1)-O(1)-Cu(1)     | 120.80(9)  |
| C(1)-N(1)-C(2)      | 111.41(17) | C(1)-N(1)-C(4)      | 124.47(16) |
| C(2)-N(1)-C(4)      | 123.97(17) | C(1)-N(2)-C(3)      | 111.05(17) |
| C(1)-N(2)-C(16)     | 124.03(16) | C(3)-N(2)-C(16)     | 124.92(16) |
| N(1)-C(1)-N(2)      | 104.16(16) | N(1)-C(1)-Cu(1)     | 124.57(14) |
| N(2)-C(1)-Cu(1)     | 131.24(16) | C(3)-C(2)-N(1)      | 106.68(18) |
| C(2)-C(3)-N(2)      | 106.69(18) | C(9)-C(4)-C(5)      | 123.9(2)   |
| C(9)-C(4)-N(1)      | 117.80(18) | C(5)-C(4)-N(1)      | 118.25(18) |
| C(4)-C(5)-C(6)      | 116.6(2)   | C(4)-C(5)-C(10)     | 122.24(19) |
| C(6)-C(5)-C(10)     | 121.14(19) | C(7)-C(6)-C(5)      | 120.5(2)   |
| C(6)-C(7)-C(8)      | 121.4(2)   | C(7)-C(8)-C(9)      | 120.4(2)   |
| C(4)-C(9)-C(8)      | 117.1(2)   | C(4)-C(9)-C(13)     | 121.5(2)   |
| C(8)-C(9)-C(13)     | 121.4(2)   | C(5)-C(10)-C(12)    | 112.65(18) |
| C(5)-C(10)-C(11)    | 110.62(18) | C(12)-C(10)-C(11)   | 110.38(18) |
| C(14)-C(13)-C(9)    | 111.73(18) | C(14)-C(13)-C(15)   | 112.22(19) |
| C(9)-C(13)-C(15)    | 110.09(18) | C(21)-C(16)-C(17)   | 123.6(2)   |
| C(21)-C(16)-N(2)    | 118.69(19) | C(17)-C(16)-N(2)    | 117.72(19) |
| C(18)-C(17)-C(16)   | 116.7(2)   | C(18)-C(17)-C(22)   | 120.67(19) |
| C(16)-C(17)-C(22)   | 122.6(2)   | C(19)-C(18)-C(17)   | 120.9(2)   |
| C(18)-C(19)-C(20)   | 120.6(2)   | C(19)-C(20)-C(21)   | 121.1(2)   |
| C(20)-C(21)-C(16)   | 117.0(2)   | C(20)-C(21)-C(25)   | 121.1(2)   |
| C(16)-C(21)-C(25)   | 121.8(2)   | C(17)-C(22)-C(24)   | 111.85(19) |
| C(17)-C(22)-C(23)   | 111.84(19) | C(24)-C(22)-C(23)   | 110.52(19) |
| C(21)-C(25)-C(27)   | 112.41(19) | C(21)-C(25)-C(26)   | 111.49(19) |
| C(27)-C(25)-C(26)   | 109.9(2)   | F(2)-C(28)-F(1)     | 108.40(19) |
| F(2)-C(28)-F(3)     | 108.07(19) | F(1)-C(28)-F(3)     | 107.49(17) |
| F(2)-C(28)-S(1)     | 111.75(15) | F(1)-C(28)-S(1)     | 111.22(16) |
| F(3)-C(28)-S(1)     | 109.75(15) | C(3)-C(2)-H(2A)     | 126.7      |
| N(1)-C(2)-H(2A)     | 126.7      | C(2)-C(3)-H(3A)     | 126.7      |
| N(2)-C(3)-H(3A)     | 126.7      | C(7)-C(6)-H(6A)     | 119.7      |
| C(5)-C(6)-H(6A)     | 119.7      | C(6)-C(7)-H(7A)     | 119.3      |
| C(8)-C(7)-H(7A)     | 119.3      | C(7)-C(8)-H(8A)     | 119.8      |
| C(9)-C(8)-H(8A)     | 119.8      | C(5)-C(10)-H(10A)   | 107.7      |
| C(12)-C(10)-H(10A)  | 107.7      | C(11)-C(10)-H(10A)  | 107.7      |
| C(10)-C(11)-H(11A)  | 109.5      | C(10)-C(11)-H(11B)  | 109.5      |
| H(11A)-C(11)-H(11B) | 109.5      | C(10)-C(11)-H(11C)  | 109.5      |
| H(11A)-C(11)-H(11C) | 109.5      | H(11B)-C(11)-H(11C) | 109.5      |
| C(10)-C(12)-H(12A)  | 109.5      | C(10)-C(12)-H(12B)  | 109.5      |
| H(12A)-C(12)-H(12B) | 109.5      | C(10)-C(12)-H(12C)  | 109.5      |

# Table 23. Bond angles [°] for IPrCu(CF<sub>3</sub>SO<sub>3</sub>).

| H(12A)-C(12)-H(12C) | 109.5 | H(12B)-C(12)-H(12C) | 109.5 |
|---------------------|-------|---------------------|-------|
| C(14)-C(13)-H(13A)  | 107.5 | C(9)-C(13)-H(13A)   | 107.5 |
| C(15)-C(13)-H(13A)  | 107.5 | C(13)-C(14)-H(14A)  | 109.5 |
| C(13)-C(14)-H(14B)  | 109.5 | H(14A)-C(14)-H(14B) | 109.5 |
| C(13)-C(14)-H(14C)  | 109.5 | H(14A)-C(14)-H(14C) | 109.5 |
| H(14B)-C(14)-H(14C) | 109.5 | C(13)-C(15)-H(15A)  | 109.5 |
| C(13)-C(15)-H(15B)  | 109.5 | H(15A)-C(15)-H(15B) | 109.5 |
| C(13)-C(15)-H(15C)  | 109.5 | H(15A)-C(15)-H(15C) | 109.5 |
| H(15B)-C(15)-H(15C) | 109.5 | C(19)-C(18)-H(18A)  | 119.5 |
| C(17)-C(18)-H(18A)  | 119.5 | C(18)-C(19)-H(19A)  | 119.7 |
| C(20)-C(19)-H(19A)  | 119.7 | C(19)-C(20)-H(20A)  | 119.4 |
| C(21)-C(20)-H(20A)  | 119.4 | C(17)-C(22)-H(22A)  | 107.5 |
| C(24)-C(22)-H(22A)  | 107.5 | C(23)-C(22)-H(22A)  | 107.5 |
| C(22)-C(23)-H(23A)  | 109.5 | C(22)-C(23)-H(23B)  | 109.5 |
| H(23A)-C(23)-H(23B) | 109.5 | C(22)-C(23)-H(23C)  | 109.5 |
| H(23A)-C(23)-H(23C) | 109.5 | H(23B)-C(23)-H(23C) | 109.5 |
| C(22)-C(24)-H(24A)  | 109.5 | C(22)-C(24)-H(24B)  | 109.5 |
| H(24A)-C(24)-H(24B) | 109.5 | C(22)-C(24)-H(24C)  | 109.5 |
| H(24A)-C(24)-H(24C) | 109.5 | H(24B)-C(24)-H(24C) | 109.5 |
| C(21)-C(25)-H(25A)  | 107.6 | C(27)-C(25)-H(25A)  | 107.6 |
| C(26)-C(25)-H(25A)  | 107.6 | C(25)-C(26)-H(26A)  | 109.5 |
| C(25)-C(26)-H(26B)  | 109.5 | H(26A)-C(26)-H(26B) | 109.5 |
| C(25)-C(26)-H(26C)  | 109.5 | H(26A)-C(26)-H(26C) | 109.5 |
| H(26B)-C(26)-H(26C) | 109.5 | C(25)-C(27)-H(27A)  | 109.5 |
| C(25)-C(27)-H(27B)  | 109.5 | H(27A)-C(27)-H(27B) | 109.5 |
| C(25)-C(27)-H(27C)  | 109.5 | H(27A)-C(27)-H(27C) | 109.5 |
| H(27B)-C(27)-H(27C) | 109.5 |                     |       |

| atom-atom-atom       | angle      | atom-atom-atom-atom       | angle       |
|----------------------|------------|---------------------------|-------------|
| O(3)-S(1)-O(1)-Cu(1) | -35.50(14  | 4) $O(2)-S(1)-O(1)-Cu(1)$ | 102.29(12)  |
|                      | C(28)-S(1) | )-O(1)-Cu(1)              | -147.41(12) |
|                      | C(1)-Cu(   | 1)-O(1)-S(1)              | -41.9(13)   |
|                      | C(2)-N(1)  | -C(1)-N(2)                | -0.5(2)     |
|                      | C(4)-N(1   | -C(1)-N(2)                | -176.31(17) |
|                      | C(2)-N(1   | -C(1)-Cu(1)               | -178.88(15) |
|                      | C(4)-N(1   | -C(1)-Cu(1)               | 5.3(3)      |
|                      | C(3)-N(2   | -C(1)-N(1)                | 0.3(2)      |
|                      | C(16)-N(2  | )-C(1)-N(1)               | -179.98(18) |
|                      | C(3)-N(2   | -C(1)-Cu(1)               | 178.56(16)  |
|                      | C(16)-N(2  | )-C(1)-Cu(1)              | -1.7(3)     |
|                      | O(1)-Cu(   | 1)-C(1)-N(1)              | 46.8(13)    |
|                      | O(1)-Cu(   | 1)-C(1)-N(2)              | -131.1(11)  |
|                      | C(1)-N(1   | )-C(2)-C(3)               | 0.5(2)      |
|                      | C(4)-N(1   | )-C(2)-C(3)               | 176.33(19)  |
|                      | N(1)-C(2   | )-C(3)-N(2)               | -0.3(2)     |
|                      | C(1)-N(2   | )-C(3)-C(2)               | 0.0(3)      |
|                      | C(16)-N(2  | )-C(3)-C(2)               | -179.7(2)   |
|                      | C(1)-N(1   | )-C(4)-C(9)               | 88.7(2)     |
|                      | C(2)-N(1   | )-C(4)-C(9)               | -86.6(2)    |
|                      | C(1)-N(1   | -C(4)-C(5)                | -92.4(2)    |
|                      | C(2)-N(1   | -C(4)-C(5)                | 92.3(2)     |
|                      | C(9)-C(4   | )-C(5)-C(6)               | 2.1(3)      |
|                      | N(1)-C(4   | )-C(5)-C(6)               | -176.70(18) |
|                      | C(9)-C(4   | )-C(5)-C(10)              | -176.8(2)   |
|                      | N(1)-C(4   | )-C(5)-C(10)              | 4.4(3)      |
|                      | C(4)-C(5   | )-C(6)-C(7)               | -0.1(3)     |
|                      | C(10)-C(5  | )-C(6)-C(7)               | 178.8(2)    |
|                      | C(5)-C(6   | )-C(7)-C(8)               | -0.9(3)     |
|                      | C(6)-C(7   | )-C(8)-C(9)               | 0.1(3)      |
|                      | C(5)-C(4   | )-C(9)-C(8)               | -2.9(3)     |
|                      | N(1)-C(4   | )-C(9)-C(8)               | 175.88(18)  |
|                      | C(5)-C(4   | )-C(9)-C(13)              | 175.55(19)  |
|                      | N(1)-C(4   | )-C(9)-C(13)              | -5.6(3)     |
|                      | C(7)-C(8   | )-C(9)-C(4)               | 1.8(3)      |
|                      | C(7)-C(8   | )-C(9)-C(13)              | -176.7(2)   |
|                      | C(4)-C(5   | )-C(10)-C(12)             | -130.9(2)   |
|                      | C(6)-C(5   | )-C(10)-C(12)             | 50.2(3)     |
|                      | C(4)-C(5   | )-C(10)-C(11)             | 105.0(2)    |
|                      | C(6)-C(5   | )-C(10)-C(11)             | -73.8(3)    |
|                      | C(4)-C(9)  | )-C(13)-C(14)             | 118.1(2)    |
|                      | C(8)-C(9   | )-C(13)-C(14)             | -63.4(3)    |

Table S24. Torsion angles [°] for IPrCu(CF<sub>3</sub>SO<sub>3</sub>)..

| C(4)-C(9)-C(13)-C(15)   | -116.5(2)   |
|-------------------------|-------------|
| C(8)-C(9)-C(13)-C(15)   | 62.0(3)     |
| C(1)-N(2)-C(16)-C(21)   | 82.4(3)     |
| C(3)-N(2)-C(16)-C(21)   | -98.0(2)    |
| C(1)-N(2)-C(16)-C(17)   | -98.3(2)    |
| C(3)-N(2)-C(16)-C(17)   | 81.4(3)     |
| C(21)-C(16)-C(17)-C(18) | -0.7(3)     |
| N(2)-C(16)-C(17)-C(18)  | -179.97(17) |
| C(21)-C(16)-C(17)-C(22) | 178.6(2)    |
| N(2)-C(16)-C(17)-C(22)  | -0.7(3)     |
| C(16)-C(17)-C(18)-C(19) | 0.2(3)      |
| C(22)-C(17)-C(18)-C(19) | -179.1(2)   |
| C(17)-C(18)-C(19)-C(20) | 0.0(3)      |
| C(18)-C(19)-C(20)-C(21) | 0.3(3)      |
| C(19)-C(20)-C(21)-C(16) | -0.8(3)     |
| C(19)-C(20)-C(21)-C(25) | 178.9(2)    |
| C(17)-C(16)-C(21)-C(20) | 1.0(3)      |
| N(2)-C(16)-C(21)-C(20)  | -179.73(18) |
| C(17)-C(16)-C(21)-C(25) | -178.7(2)   |
| N(2)-C(16)-C(21)-C(25)  | 0.6(3)      |
| C(18)-C(17)-C(22)-C(24) | 56.7(3)     |
| C(16)-C(17)-C(22)-C(24) | -122.6(2)   |
| C(18)-C(17)-C(22)-C(23) | -67.9(3)    |
| C(16)-C(17)-C(22)-C(23) | 112.8(2)    |
| C(20)-C(21)-C(25)-C(27) | -51.3(3)    |
| C(16)-C(21)-C(25)-C(27) | 128.3(2)    |
| C(20)-C(21)-C(25)-C(26) | 72.6(3)     |
| C(16)-C(21)-C(25)-C(26) | -107.8(2)   |
| O(3)-S(1)-C(28)-F(2)    | -55.78(19)  |
| O(2)-S(1)-C(28)-F(2)    | 179.21(16)  |
| O(1)-S(1)-C(28)-F(2)    | 62.46(18)   |
| O(3)-S(1)-C(28)-F(1)    | -177.09(15) |
| O(2)-S(1)-C(28)-F(1)    | 57.90(18)   |
| O(1)-S(1)-C(28)-F(1)    | -58.84(17)  |
| O(3)-S(1)-C(28)-F(3)    | 64.10(18)   |
| O(2)-S(1)-C(28)-F(3)    | -60.91(18)  |
| O(1)-S(1)-C(28)-F(3)    | -177.66(16) |
|                         |             |

**Computational Methods.** All computations were performed using the Gaussian03 software package. All Cu(I) and Cu(III) species were treated as singlets. All Cu(0) and Cu(II) species were treated as doublets. Geometries were optimized by density functional theory method (B3LYP) with 6-311+G\*\* basis set unless otherwise stated. A harmonic oscillator model was used for vibration frequency analysis of the optimized structures. All frequencies of the minima were positive, while transition states had one and only one negative frequency. The vibration mode of the negative frequency in the transition state was confirmed to be the one that corresponding to the reaction coordinate.

Gas phase enthalpies and entropies (pressure = 1 atm, 298.15 K) of all species were obtained via frequency calculations. No scaling factor was used for the calculated frequencies. An implicit solvation model, the PCM/UA0 polarizable continuum model, was employed for the calculation of solvation energies. The gas phase entropies were converted to corresponding entropies (1 M in MeCN) according to an empirical method developed by Wertz.<sup>s5</sup>

The transition state  $(TS_3)$  for the reaction of 3 and 4 to 5 and 6 was located at the level of B3LYP/LANL2DZ. Single-point and solvation energies were calculated for 3, 4, and TS<sub>3</sub> at the level of B3LYP/6-311+G\*\*. These numbers and thermal corrections at the level of B3LYP/LANL2DZ were used to obtain the activation free energy.

#### **Full reference for** 14(a):

Gaussian03, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford, CT, **2004**.



Scheme S1. Relative energies of various Cu(III) species, reductive elimination transition states, and 10.





#### Wertz Method

Wertz's method is composed of two steps, each of which requires a thermodynamic cycle. In the first step, the entropy change from the gaseous state of MeCN (standard state,  $S_g^{\circ} = 0.261 \text{ kJ mol}^{-1} \text{ K}^{-1}$ ) to liquid state ( $S_l^{\circ} = 0.150 \text{ kJ mol}^{-1} \text{ K}^{-1}$ ) is separated into two steps: (*i*) the adiabatic compression of an ideal MeCN gas in the standard state to a hypothetical ideal gas state with the concentration equal to that of the liquid state (d=0.786 g/ml, 298 K, 19.16 M); and (*ii*) conversion of the hypothetical state to the final liquid state. (Scheme S3)

#### Scheme S3.



The entropy change of the first substep ( $\Delta S_1$ ) can be estimated according to Maxwell's relation, while that of the second step ( $\Delta S_2$ ) can be derived from the thermodynamic cycle. The fraction of entropy lost in second step is defined as a coefficient,  $\alpha$ , which was calculated to be 0.29.

dG = -SdT + VdP = VdP (dT = 0) Maxwell Relation

$$\Delta G = \int_{P_1}^{P_2} V dP = \int_{P_1}^{P_2} \frac{RT}{P} dP = RTLn \frac{P_2}{P_1} = -T\Delta S$$
  
$$\Delta S_1 = -RLn \frac{P_2}{P_1} = -0.051 \quad kJ \quad Mol^{-1} \quad K^{-1}$$
  
$$\alpha = \frac{\Delta S_2}{S_g} = \frac{S_g - S_l^o}{S_g} = \frac{S_g^o + \Delta S_1 - S_l^o}{S_g} = 0.29$$
  
$$\Delta S_2 = 0.29S_g$$

In the second step, the entropy change from the gas state of any given molecule,  $\mathbf{M}$ , in standard state to its 1 M state in MeCN is composed of three substeps: (*i*) adiabatic compression of ideal  $\mathbf{M}$  gas in standard state to a hypothetical ideal gas state with the concentration equal to that of the liquid state (19.16 M); (*ii*) conversion of the hypothetical ideal gas state to a hypothetical liquid state; and (*iii*) expansion of the hypothetical liquid state to the 1 M state in MeCN. (Scheme S4)

Scheme S4.



The entropy change of the first and the third step can be estimated according to Maxwell's relations. The fraction of entropy loss in the second step is assumed to be equal to  $\alpha$ . The calculated gas phase entropy of **M** in standard state is then converted to the corresponding entropy in its 1 M state in MeCN according to the following equation and used for the calculations of free energies in MeCN.

$$S_1^o = S_o^o + \Delta S_1 + \Delta S_2 + \Delta S_3 = 0.71 \times S_o^o - 0.0112 \ kJ \ Mol^{-1} \ K^{-1}$$

See references s6-17 for examples of other applications of Wertz method.

#### **Reference:**

s5. Wertz, D. H. J. Am. Chem. Soc. 1980, 102, 5316-5322.

- s6. Williams, I. H.; Spangler, D.; Femec, D. A.; Maggiora, G. M.; Schowen, R. L. J. Am. Chem. Soc. **1983**, 105, 31-40.
- s7. Williams, I. H. J. Am. Chem. Soc. 1987, 109, 6299-6307.
- s8. Wolfe, S.; Kim, C.-K. ; Yang, K.; Weinberg, N.; Shi, Z. J. Am. Chem. Soc. 1995, 117, 42404260.
- s9. Cooper, J.; Ziegler, T. Inorg. Chem. 2002, 41, 6614-6622.
- s10. Hristov, I. H.; Ziegler, T. Organometallics 2003, 22, 3513-3525.
- s11. Lau, J. K.-C.; Deubel, D. V. Chem. Eur. J. 2005, 11, 2849-2855.
- s12. Lin, S.-T.; Maiti, P. K.; Goddard, III, W. A. J. Phys. Chem. B 2005, 109, 8663-8672.
- s13. Zhu, H.; Ziegler, T. J. Organomet. Chem. 2006, 691, 4486-4497.
- s14. Lau, J. K.-C.; Deubel, D. V. J. Chem. Theory Comp. 2006, 2, 103-106.
- s15. Deubel, D. V. J. Am. Chem. Soc. 2006, 128, 1654-1663.
- s16. Ahlquist, M.; Nielsen, R. J.; Periana, R. A.; Goddard III, W. A. J. Am. Chem. Soc. **2009**, *131*, 17110-17115.
- s17. Hesp, K. D.; Tobisch, S.; Stradiotto, M. J. Am. Chem. Soc. 2010, 132, 413-426.

#### Calculated energies and coordinates (B3LYP/6-311+G\*\*):

3

| Sum of electronic and zero-poin  | t Energies=   | -2405.613910 |
|----------------------------------|---------------|--------------|
| Sum of electronic and thermal E  | Energies=     | -2405.603230 |
| Sum of electronic and thermal E  | Enthalpies=   | -2405.602286 |
| Sum of electronic and thermal F  | ree Energies= | -2405.652374 |
| <psi(f)  H  psi(f)>              | (a.u.) = -240 | 5.738482     |
| <psi(f) H+V(f)/2 psi(f)>         | (a.u.) = -    | 2405.768425  |
| Total free energy in solution:   |               |              |
| with all non electrostatic terms | (a.u.) =      | -2405.750477 |

| Ν  | 0.002786  | 0.000679  | 0.016064  |
|----|-----------|-----------|-----------|
| С  | 0.003889  | 0.001266  | 1.377928  |
| Ν  | 1.325009  | 0.000677  | 1.708562  |
| С  | 2.126836  | -0.000290 | 0.579394  |
| С  | 1.292429  | -0.000301 | -0.488679 |
| Cu | -1.499691 | 0.003383  | 2.552561  |
| Cl | -3.174730 | 0.005676  | 3.861140  |
| С  | 1.834639  | 0.001909  | 3.076785  |
| С  | -1.201443 | 0.001888  | -0.809521 |
| Η  | 1.503311  | -0.001120 | -1.544571 |
| Н  | 3.202376  | -0.001097 | 0.630299  |
| Н  | 0.986379  | -0.002996 | 3.758555  |
| Η  | 2.443075  | -0.887129 | 3.252939  |
| Н  | 2.434265  | 0.896544  | 3.254968  |
| Η  | -2.068224 | -0.002896 | -0.151457 |
| Η  | -1.229171 | 0.896458  | -1.434539 |
| Η  | -1.225176 | -0.887217 | -1.442405 |

#### 4

N 0.010486 0.002496 -0.004985

| С  | 0.007167  | 0.008303  | 1.519397  |
|----|-----------|-----------|-----------|
| С  | 1.467019  | -0.006323 | 2.035954  |
| Ν  | 2.343280  | 0.399148  | 0.878825  |
| С  | 1.851811  | 1.682702  | 0.261102  |
| С  | 0.538548  | 1.348822  | -0.488986 |
| С  | 0.952290  | -1.096932 | -0.479773 |
| С  | 2.410438  | -0.696773 | -0.154321 |
| F  | 3.625403  | 0.615603  | 1.364777  |
| С  | -1.430342 | -0.249332 | -0.492595 |
| Cl | -1.573031 | -0.150164 | -2.242955 |
| Η  | -0.530776 | 0.899236  | 1.842883  |
| Η  | -0.530424 | -0.872718 | 1.869652  |
| Η  | 1.625483  | 0.715498  | 2.837119  |
| Η  | 1.801539  | -0.989554 | 2.365572  |
| Η  | 0.687654  | 1.275468  | -1.564059 |
| Η  | -0.220797 | 2.105842  | -0.294152 |
| Η  | 2.629332  | 2.038752  | -0.414633 |
| Η  | 1.721082  | 2.400831  | 1.070137  |
| Η  | 2.952485  | -0.297647 | -1.011122 |
| Η  | 2.975847  | -1.522527 | 0.277603  |
| Η  | 0.817395  | -1.225376 | -1.552539 |
| Н  | 0.657451  | -2.016410 | 0.026074  |
| Η  | -1.707060 | -1.247502 | -0.156982 |
| Η  | -2.058467 | 0.508640  | -0.027216 |

| Sum of electronic and zero-point l    | Energies=      | -2505.159141 |
|---------------------------------------|----------------|--------------|
| Sum of electronic and thermal En      | ergies=        | -2505.146773 |
| Sum of electronic and thermal En      | thalpies=      | -2505.145829 |
| Sum of electronic and thermal Fre     | ee Energies=   | -2505.201158 |
| $\langle psi(f)   H   psi(f) \rangle$ | (a.u.) = -2505 | 5.287555     |
| <psi(f) H+V(f)/2 psi(f)>              | (a.u.) = -2    | 2505.380777  |
| Total free energy in solution:        |                |              |
| with all non electrostatic terms      | (a.u.) =       | -2505.362321 |
|                                       |                |              |
|                                       |                |              |

| С  | 0.012290  | 0.002600  | 0.005462  |
|----|-----------|-----------|-----------|
| Ν  | 0.011783  | 0.016160  | 1.392691  |
| С  | 1.284062  | 0.011352  | 1.795758  |
| Ν  | 2.099341  | -0.042537 | 0.740487  |
| С  | 1.309074  | -0.033859 | -0.399685 |
| С  | -1.179624 | 0.082279  | 2.257302  |
| Cu | 1.847025  | 0.228738  | 3.578252  |
| F  | 1.887983  | 1.970708  | 3.553147  |

| С  | 3.572522  | -0.051287 | 0.772602  |
|----|-----------|-----------|-----------|
| Cl | 1.824968  | -1.846260 | 3.693845  |
| Н  | -0.903364 | 0.034113  | -0.560537 |
| Η  | 1.740304  | -0.040208 | -1.386483 |
| Η  | 3.917933  | -0.882625 | 1.386275  |
| Η  | 3.932487  | -0.184089 | -0.244809 |
| Η  | 3.934573  | 0.898628  | 1.166158  |
| Η  | -1.156783 | -0.740235 | 2.971427  |
| Η  | -1.204100 | 1.042904  | 2.771991  |
| Η  | -2.060683 | -0.015231 | 1.627570  |

| Sum of electronic and zero-point       | -844.517817    |             |
|----------------------------------------|----------------|-------------|
| Sum of electronic and thermal E        | Energies=      | -844.508972 |
| Sum of electronic and thermal E        | Enthalpies=    | -844.508027 |
| Sum of electronic and thermal F        | Free Energies= | -844.552037 |
| $\langle psi(f)  $ H $ psi(f) \rangle$ | (a.u.) = -84   | 4.731720    |
| <psi(f) H+V(f)/2 psi(f)>               | (a.u.) =       | -844.816382 |
| Total free energy in solution:         |                |             |
| with all non electrostatic terms       | (a.u.) =       | -844.805783 |

| Ν  | 0.008646  | 0.000695  | -0.004886 |
|----|-----------|-----------|-----------|
| С  | 0.006604  | -0.003316 | 1.523302  |
| С  | 1.485888  | 0.004319  | 2.017413  |
| Ν  | 2.402709  | 0.184888  | 0.894950  |
| С  | 2.065452  | 1.410885  | 0.172065  |
| С  | 0.652950  | 1.300522  | -0.478574 |
| С  | 0.847110  | -1.179639 | -0.485848 |
| С  | 2.314109  | -0.962666 | -0.007687 |
| С  | -1.424969 | -0.113183 | -0.460614 |
| Cl | -1.616255 | -0.059300 | -2.226096 |
| Н  | -0.546255 | 0.882826  | 1.836618  |
| Н  | -0.540972 | -0.890635 | 1.842300  |
| Н  | 1.630878  | 0.810530  | 2.737297  |
| Н  | 1.722759  | -0.934380 | 2.519601  |
| Н  | 0.690731  | 1.254877  | -1.564852 |
| Н  | -0.016289 | 2.110693  | -0.186494 |
| Н  | 2.815224  | 1.590577  | -0.598911 |
| Н  | 2.101391  | 2.250095  | 0.867929  |
| Н  | 2.970019  | -0.787400 | -0.861124 |
| Н  | 2.673542  | -1.854994 | 0.506155  |
| Η  | 0.755188  | -1.222339 | -1.569160 |
|    |           |           |           |

| Η | 0.391163  | -2.074013 | -0.058959 |
|---|-----------|-----------|-----------|
| Η | -1.812993 | -1.063701 | -0.102344 |
| Η | -1.977667 | 0.718192  | -0.029506 |

#### MeCN

Sum of electronic and zero-point Energies=-132.751002Sum of electronic and thermal Energies=-132.747390Sum of electronic and thermal Enthalpies=-132.746446Sum of electronic and thermal Free Energies=-132.775018<psi(f)| H |psi(f)> (a.u.) = -132.794058<psi(f)|H+V(f)/2|psi(f)> (a.u.) = -132.804984Total free energy in solution:with all non electrostatic terms(a.u.) = -132.796362

| С | 0.000035  | -0.000177 | 0.007141  |
|---|-----------|-----------|-----------|
| С | 0.001243  | -0.000713 | 1.463641  |
| Ν | 0.006588  | 0.000812  | 2.616207  |
| Н | -1.021552 | 0.076082  | -0.370418 |
| Н | 0.576557  | 0.846622  | -0.370497 |
| Н | 0.444780  | -0.922609 | -0.371478 |

| Sum of electronic and zero-point       | Energies=      | -2637.965706 |
|----------------------------------------|----------------|--------------|
| Sum of electronic and thermal E        | nergies=       | -2637.948647 |
| Sum of electronic and thermal E        | nthalpies=     | -2637.947703 |
| Sum of electronic and thermal F        | ree Energies=  | -2638.015074 |
| $\langle psi(f)  $ H $ psi(f) \rangle$ | (a.u.) = -2638 | 8.143430     |
| <psi(f) H+V(f)/2 psi(f)>               | (a.u.) = -2    | 2638.215871  |
| Total free energy in solution:         |                |              |
| with all non electrostatic terms       | (a.u.) =       | -2638.190086 |
|                                        |                |              |
|                                        |                |              |

| С  | 0.016747  | 0.004357  | 0.022446  |
|----|-----------|-----------|-----------|
| Ν  | 0.016306  | 0.001759  | 1.410643  |
| С  | 1.284358  | -0.003360 | 1.832769  |
| Ν  | 2.095577  | -0.012232 | 0.769963  |
| С  | 1.312620  | -0.001311 | -0.377131 |
| С  | -1.172894 | 0.027105  | 2.272680  |
| Cu | 1.806652  | 0.160335  | 3.630690  |
| Cl | 1.984680  | -1.978058 | 3.557045  |
| С  | 3.563752  | 0.010199  | 0.802653  |
|    |           |           |           |

| Ν | 2.360066  | 0.374352  | 5.496687  |
|---|-----------|-----------|-----------|
| С | 2.675381  | 0.565040  | 6.583067  |
| С | 3.072873  | 0.809092  | 7.953738  |
| F | 1.527751  | 1.913210  | 3.410737  |
| Η | -0.897405 | 0.013515  | -0.545735 |
| Η | 1.748369  | 0.003955  | -1.361356 |
| Н | 3.921184  | -0.745054 | 1.501559  |
| Η | 3.932166  | -0.225971 | -0.193187 |
| Η | 3.912912  | 1.000739  | 1.095409  |
| Η | -1.215197 | -0.884893 | 2.868542  |
| Η | -1.133902 | 0.906840  | 2.914734  |
| Н | -2.054416 | 0.082711  | 1.638139  |
| Η | 2.359681  | 0.335493  | 8.632063  |
| Η | 4.066383  | 0.390127  | 8.128001  |
| Н | 3.094049  | 1.884414  | 8.143368  |

# $TS_1$

| Sum of electronic and zero-point      | t Energies= -2637.956418    |
|---------------------------------------|-----------------------------|
| Sum of electronic and thermal E       | Energies= -2637.939856      |
| Sum of electronic and thermal E       | Enthalpies= -2637.938912    |
| Sum of electronic and thermal F       | Free Energies= -2638.004139 |
| $\langle psi(f)   H   psi(f) \rangle$ | (a.u.) = -2638.131348       |
| <psi(f) H+V(f)/2 psi(f)>              | (a.u.) = -2638.209715       |
| Total free energy in solution:        |                             |
| with all non electrostatic terms      | (a.u.) = -2638.184232       |
|                                       |                             |

| С  | -0.005749 | -0.007841 | 0.007065  |
|----|-----------|-----------|-----------|
| Ν  | 0.014634  | 0.002898  | 1.358638  |
| С  | 1.334997  | 0.007758  | 1.773102  |
| С  | 2.112245  | -0.050193 | 0.662066  |
| Ν  | 1.269141  | -0.090637 | -0.434608 |
| С  | -1.151769 | 0.151762  | 2.233555  |
| С  | 1.695537  | -0.060446 | -1.836539 |
| Cu | -1.310772 | 1.091999  | -0.963288 |
| F  | -0.431917 | 2.594228  | -0.427295 |
| Cl | -1.393441 | -1.162299 | -0.903462 |
| Ν  | -2.819712 | 1.805776  | -2.055601 |
| С  | -3.616680 | 2.388257  | -2.643325 |
| С  | -4.618978 | 3.128281  | -3.382866 |
| Н  | 3.183167  | -0.048620 | 0.553259  |
| Н  | 1.601465  | 0.069308  | 2.814218  |
| Н  | -1.950292 | -0.505987 | 1.892318  |
| Η  | -0.863189 | -0.137454 | 3.241897  |
|    |           |           |           |

| Η | -1.484345 | 1.190973  | 2.229253  |
|---|-----------|-----------|-----------|
| Н | 1.068813  | -0.731117 | -2.423168 |
| Η | 1.627709  | 0.959002  | -2.219565 |
| Н | 2.726247  | -0.404783 | -1.888943 |
| Н | -4.588121 | 2.841334  | -4.436131 |
| Н | -5.610734 | 2.911010  | -2.980538 |
| Η | -4.421020 | 4.198808  | -3.295060 |

| Sum of electronic and zero-point                       | -2505.473357  |              |  |
|--------------------------------------------------------|---------------|--------------|--|
| Sum of electronic and thermal E                        | -2505.461344  |              |  |
| Sum of electronic and thermal E                        | -2505.460400  |              |  |
| Sum of electronic and thermal Free Energies= -2505.513 |               |              |  |
| <psi(f)  H  psi(f)>                                    | (a.u.) = -250 | )5.600515    |  |
| <psi(f) H+V(f)/2 psi(f)>                               | (a.u.) = -    | -2505.630652 |  |
| Total free energy in solution:                         |               |              |  |
| with all non electrostatic terms                       | (a.u.) =      | -2505.612668 |  |
|                                                        |               |              |  |

| Ν  | 0.014681  | -0.002377 | 0.001707  |
|----|-----------|-----------|-----------|
| С  | 0.014476  | 0.001222  | 1.385466  |
| С  | 1.312541  | 0.004249  | 1.776066  |
| Ν  | 2.077722  | 0.011477  | 0.624172  |
| С  | 1.284392  | 0.003801  | -0.474603 |
| С  | 3.545593  | -0.019758 | 0.623568  |
| Cu | 1.908237  | 0.000658  | -2.364130 |
| Cl | 0.549924  | -1.049584 | -3.694860 |
| С  | -1.208032 | 0.053589  | -0.803030 |
| F  | 3.491947  | 0.892923  | -2.215904 |
| Η  | 1.752669  | 0.000037  | 2.758469  |
| Н  | -0.895410 | 0.005752  | 1.960736  |
| Η  | -0.976499 | -0.242941 | -1.823170 |
| Η  | -1.940489 | -0.637584 | -0.385053 |
| Н  | -1.614608 | 1.066835  | -0.793618 |
| Н  | 3.897963  | 0.327848  | -0.347133 |
| Η  | 3.908918  | 0.644830  | 1.407911  |
| Н  | 3.893977  | -1.036303 | 0.817462  |

| Sum of electronic and zero-point Energies= | -2670.893716 |
|--------------------------------------------|--------------|
| Sum of electronic and thermal Energies=    | -2670.872413 |
| Sum of electronic and thermal Enthalpies=  | -2670.871469 |

| Sum of electronic and thermal F        | ree Energies= -2670.951147 |
|----------------------------------------|----------------------------|
| $\langle psi(f)  $ H $ psi(f) \rangle$ | (a.u.) = -2671.112787      |
| <psi(f) H+V(f)/2 psi(f)>               | (a.u.) = -2671.184532      |
| Total free energy in solution:         |                            |
| with all non electrostatic terms       | (a.u.) = -2671.150611      |

| Ν  | 0.071399  | -0.126957 | 0.070823  |
|----|-----------|-----------|-----------|
| С  | 0.160987  | -0.020506 | 1.449050  |
| С  | 1.468936  | 0.174008  | 1.744256  |
| Ν  | 2.151350  | 0.177085  | 0.537223  |
| С  | 1.293717  | -0.007587 | -0.492452 |
| С  | 3.586563  | 0.428229  | 0.412946  |
| Cu | 1.729488  | 0.024404  | -2.431587 |
| Ν  | 3.095885  | 0.328801  | -3.955459 |
| С  | 3.678494  | 0.782160  | -4.836502 |
| С  | 4.398862  | 1.376378  | -5.945394 |
| С  | -1.180284 | -0.340659 | -0.660251 |
| Cl | 0.730441  | 1.984597  | -2.753074 |
| Ν  | 1.693101  | -2.026538 | -2.797871 |
| С  | 1.639742  | -3.150651 | -3.032561 |
| С  | 1.572232  | -4.568608 | -3.332675 |
| Η  | 1.965031  | 0.313841  | 2.689476  |
| Η  | -0.701820 | -0.088097 | 2.089352  |
| Η  | -1.122191 | 0.171090  | -1.618768 |
| Η  | -1.359907 | -1.407263 | -0.806184 |
| Η  | -1.999811 | 0.087038  | -0.084626 |
| Η  | 3.895696  | 0.224343  | -0.610446 |
| Η  | 3.808334  | 1.469398  | 0.651854  |
| Η  | 4.135764  | -0.228480 | 1.088258  |
| Η  | 5.432591  | 1.574542  | -5.654781 |
| Н  | 4.390598  | 0.700613  | -6.802856 |
| Η  | 3.918987  | 2.317200  | -6.224625 |
| Η  | 2.524358  | -4.904689 | -3.748510 |
| Η  | 1.360676  | -5.132531 | -2.421908 |
| Η  | 0.779642  | -4.754115 | -4.060752 |

| Sum of electronic and zero-point Energies=             | -764.787667 |
|--------------------------------------------------------|-------------|
| Sum of electronic and thermal Energies=                | -764.779177 |
| Sum of electronic and thermal Enthalpies=              | -764.778233 |
| Sum of electronic and thermal Free Energies=           | -764.822238 |
| < psi(f)   H   psi(f) > (a.u.) = -764                  | .917363     |
| <psi(f) h+v(f) 2 psi(f)=""> (a.u.) = -</psi(f) h+v(f)> | 764.993216  |

Total free energy in solution: with all non electrostatic terms (a.u.) = -764.979740

| 0.010359  | 0.014595                                                                                                                                                                                          | 0.008169                                                                                                                                                                                                                                                                       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.012084  | 0.000247                                                                                                                                                                                          | 1.350084                                                                                                                                                                                                                                                                       |
| 1.329318  | -0.027233                                                                                                                                                                                         | 1.775141                                                                                                                                                                                                                                                                       |
| 2.114593  | -0.029082                                                                                                                                                                                         | 0.666867                                                                                                                                                                                                                                                                       |
| 1.276945  | -0.002722                                                                                                                                                                                         | -0.435029                                                                                                                                                                                                                                                                      |
| -1.180056 | 0.011761                                                                                                                                                                                          | 2.213990                                                                                                                                                                                                                                                                       |
| 1.696782  | 0.004921                                                                                                                                                                                          | -1.846177                                                                                                                                                                                                                                                                      |
| -1.369065 | 0.049031                                                                                                                                                                                          | -0.969301                                                                                                                                                                                                                                                                      |
| 3.186072  | -0.046621                                                                                                                                                                                         | 0.564568                                                                                                                                                                                                                                                                       |
| 1.587977  | -0.042877                                                                                                                                                                                         | 2.819980                                                                                                                                                                                                                                                                       |
| -1.789651 | -0.868890                                                                                                                                                                                         | 2.014072                                                                                                                                                                                                                                                                       |
| -0.844629 | -0.005181                                                                                                                                                                                         | 3.248016                                                                                                                                                                                                                                                                       |
| -1.758507 | 0.917215                                                                                                                                                                                          | 2.033245                                                                                                                                                                                                                                                                       |
| 1.305204  | -0.876584                                                                                                                                                                                         | -2.352870                                                                                                                                                                                                                                                                      |
| 1.335395  | 0.909546                                                                                                                                                                                          | -2.334203                                                                                                                                                                                                                                                                      |
| 2.783516  | -0.013160                                                                                                                                                                                         | -1.872480                                                                                                                                                                                                                                                                      |
|           | 0.010359<br>0.012084<br>1.329318<br>2.114593<br>1.276945<br>-1.180056<br>1.696782<br>-1.369065<br>3.186072<br>1.587977<br>-1.789651<br>-0.844629<br>-1.758507<br>1.305204<br>1.335395<br>2.783516 | 0.0103590.0145950.0120840.0002471.329318-0.0272332.114593-0.0290821.276945-0.002722-1.1800560.0117611.6967820.004921-1.3690650.0490313.186072-0.0466211.587977-0.042877-1.789651-0.868890-0.844629-0.005181-1.7585070.9172151.305204-0.8765841.3353950.9095462.783516-0.013160 |

# Cu<sup>I</sup>F(MeCN)

| Sum of electronic and zero-point       | Energies= -1873.191214     |
|----------------------------------------|----------------------------|
| Sum of electronic and thermal E        | Inergies= -1873.184426     |
| Sum of electronic and thermal E        | Inthalpies= -1873.183482   |
| Sum of electronic and thermal F        | ree Energies= -1873.222188 |
| $\langle psi(f)  $ H $ psi(f) \rangle$ | (a.u.) = -1873.235283      |
| <psi(f) H+V(f)/2 psi(f)>               | (a.u.) = -1873.268395      |
| Total free energy in solution:         |                            |
| with all non electrostatic terms       | (a.u.) = -1873.254949      |

| С  | 0.000058  | -0.000047 | 0.017786  |
|----|-----------|-----------|-----------|
| С  | 0.002196  | 0.000823  | 1.468454  |
| Ν  | 0.004566  | 0.001049  | 2.619390  |
| Cu | 0.007716  | 0.003323  | 4.448287  |
| F  | 0.010788  | 0.005507  | 6.225442  |
| Η  | 0.998298  | 0.236588  | -0.356734 |
| Η  | -0.294766 | -0.983642 | -0.354143 |
| Η  | -0.704978 | 0.746275  | -0.354599 |

#### 11

Sum of electronic and zero-point Energies= -2637.947689

| Sum of electronic and thermal       | Energies= -2637.930683      |
|-------------------------------------|-----------------------------|
| Sum of electronic and thermal       | Enthalpies= -2637.929739    |
| Sum of electronic and thermal       | Free Energies= -2637.995998 |
| <psi(f)  h=""  psi(f)=""></psi(f) > | (a.u.) = -2638.121568       |
| <psi(f) H+V(f)/2 psi(f)>            | (a.u.) = -2638.208100       |
| Total free energy in solution:      |                             |
| with all non electrostatic term     | (a.u.) = -2638.181907       |
|                                     |                             |

| С  | 0.031688  | 0.013504  | 0.010690  |
|----|-----------|-----------|-----------|
| С  | 0.025881  | 0.005248  | 1.367298  |
| Ν  | 1.349675  | 0.012441  | 1.780040  |
| С  | 2.145434  | 0.027607  | 0.698169  |
| Ν  | 1.359069  | 0.017031  | -0.390473 |
| С  | 1.798606  | -0.114751 | 3.172752  |
| Cu | 4.058444  | 0.083871  | 0.714812  |
| F  | 5.839590  | 0.031090  | 0.723397  |
| С  | 1.817560  | 0.014548  | -1.785572 |
| Cl | 3.815241  | -2.036776 | 0.695912  |
| Ν  | 4.191401  | 2.013214  | 0.746512  |
| С  | 4.629076  | 3.074372  | 0.765654  |
| С  | 5.200159  | 4.403256  | 0.789367  |
| Н  | -0.791053 | 0.001708  | 2.068574  |
| Н  | -0.779162 | 0.025911  | -0.697573 |
| Н  | 2.770085  | -0.509067 | -1.849251 |
| Н  | 1.087254  | -0.519557 | -2.390679 |
| Н  | 1.921152  | 1.036071  | -2.153316 |
| Н  | 2.685245  | 0.497313  | 3.331647  |
| Н  | 1.004846  | 0.239526  | 3.827448  |
| Н  | 2.025984  | -1.157764 | 3.394752  |
| Н  | 4.863000  | 4.937128  | 1.680591  |
| Н  | 6.289875  | 4.320891  | 0.806644  |
| Н  | 4.892955  | 4.955670  | -0.101388 |

# $TS_2$

| Sum of electronic and zero-point Energies=   | -2637.939771 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -2637.923012 |
| Sum of electronic and thermal Enthalpies=    | -2637.922067 |
| Sum of electronic and thermal Free Energies= | -2637.988825 |
| < psi(f)   H $  psi(f) >$ (a.u.) = -263      | 8.111234     |
| < psi(f) H+V(f)/2 psi(f)> (a.u.) = -         | 2638.203844  |
| Total free energy in solution:               |              |
| with all non electrostatic terms $(a.u.) =$  | -2638.177684 |

| Ν  | 0.030017  | 0.050751  | 0.033680  |
|----|-----------|-----------|-----------|
| С  | 0.046051  | -0.078423 | 1.408491  |
| С  | 1.347138  | -0.149829 | 1.798357  |
| Ν  | 2.127361  | -0.064375 | 0.662136  |
| С  | 1.313097  | 0.100408  | -0.414727 |
| С  | 3.594099  | -0.105179 | 0.629130  |
| Cu | 1.823093  | 1.307165  | -1.895497 |
| Ν  | 1.671741  | 3.084514  | -1.064070 |
| С  | 1.755916  | 4.229610  | -1.134895 |
| С  | 1.867946  | 5.668151  | -1.244775 |
| Cl | 1.750961  | -0.929634 | -2.064799 |
| С  | -1.173593 | 0.156358  | -0.799540 |
| F  | 2.341937  | 1.962707  | -3.506524 |
| Η  | 1.779336  | -0.242322 | 2.780249  |
| Η  | -0.860503 | -0.097456 | 1.989232  |
| Н  | -1.050547 | -0.451883 | -1.694710 |
| Η  | -2.019408 | -0.219100 | -0.227454 |
| Η  | -1.353833 | 1.195787  | -1.077689 |
| Н  | 4.000595  | 0.902239  | 0.528435  |
| Н  | 3.944802  | -0.547800 | 1.559053  |
| Η  | 3.921847  | -0.723284 | -0.205701 |
| Н  | 2.603682  | 6.042007  | -0.529596 |
| Н  | 2.189505  | 5.919745  | -2.258741 |
| Н  | 0.900841  | 6.135047  | -1.046592 |
|    |           |           |           |

| Sum of electronic and zero-point Energies=       | -2637.938282 |
|--------------------------------------------------|--------------|
| Sum of electronic and thermal Energies=          | -2637.921402 |
| Sum of electronic and thermal Enthalpies=        | -2637.920458 |
| Sum of electronic and thermal Free Energies=     | -2637.987388 |
| < psi(f)   H   psi(f) > (a.u.) = -263            | 38.111707    |
| $\langle psi(f) H+V(f)/2 psi(f)\rangle$ (a.u.) = | -2638.198562 |
| Total free energy in solution:                   |              |
| with all non electrostatic terms (a.u.) =        | -2638.172259 |
|                                                  |              |
|                                                  |              |

| С | -0.039229 | 0.015859  | 0.020361  |
|---|-----------|-----------|-----------|
| Ν | -0.019139 | 0.050115  | 1.361835  |
| С | 1.292838  | -0.039248 | 1.798946  |
| С | 2.077323  | -0.115189 | 0.695183  |
| Ν | 1.231284  | -0.079878 | -0.404932 |
| С | -1.195870 | 0.203740  | 2.231160  |
| С | 1.689580  | -0.027100 | -1.797729 |

| Cu | -1.629308 | 0.287594  | -1.070748 |
|----|-----------|-----------|-----------|
| Ν  | -1.693193 | -1.484813 | -1.684382 |
| С  | -1.902142 | -2.528425 | -2.112777 |
| С  | -2.189939 | -3.832411 | -2.667816 |
| Cl | -3.398461 | 0.727403  | -2.260005 |
| F  | -1.541196 | 1.923652  | -0.423443 |
| Η  | 3.146654  | -0.188645 | 0.592501  |
| Η  | 1.547432  | -0.041845 | 2.845107  |
| Η  | -1.735504 | -0.740697 | 2.309022  |
| Η  | -0.855033 | 0.505306  | 3.219291  |
| Η  | -1.835795 | 0.982972  | 1.820548  |
| Η  | 0.854040  | -0.236493 | -2.462281 |
| Η  | 2.084796  | 0.964683  | -2.019521 |
| Η  | 2.464345  | -0.777561 | -1.950318 |
| Η  | -1.982049 | -4.608945 | -1.928468 |
| Н  | -3.243981 | -3.873171 | -2.954544 |
| Η  | -1.570863 | -3.998423 | -3.552772 |
|    |           |           |           |

| Sum of electronic and zero-point       | t Energies=    | -2770.731464 |
|----------------------------------------|----------------|--------------|
| Sum of electronic and thermal E        | Energies=      | -2770.709055 |
| Sum of electronic and thermal E        | Enthalpies=    | -2770.708111 |
| Sum of electronic and thermal F        | Free Energies= | -2770.789204 |
| $\langle psi(f)  $ H $ psi(f) \rangle$ | (a.u.) = -2770 | ).955162     |
| <psi(f) H+V(f)/2 psi(f)>               | (a.u.) = -2    | 2771.024289  |
| Total free energy in solution:         |                |              |
| with all non electrostatic terms       | (a.u.) =       | -2770.990827 |
|                                        |                |              |

| Ν  | -0.011397 | -0.064560 | 0.034710  |
|----|-----------|-----------|-----------|
| С  | 0.021779  | -0.028478 | 1.374401  |
| Ν  | 1.302213  | 0.058158  | 1.762597  |
| С  | 2.108093  | 0.090519  | 0.635718  |
| С  | 1.289321  | 0.019606  | -0.442209 |
| Cu | -1.407295 | 0.020683  | 2.610845  |
| F  | -0.854198 | 1.692647  | 3.008047  |
| С  | 1.783538  | 0.110154  | 3.150146  |
| С  | -1.197334 | -0.167697 | -0.823998 |
| Cl | -1.566642 | -2.091081 | 2.156720  |
| Ν  | -3.343343 | 0.965117  | 1.368214  |
| С  | -4.217409 | 1.666738  | 1.104779  |
| С  | -5.316759 | 2.559132  | 0.775755  |
| Ν  | -2.599519 | -0.060411 | 4.194771  |
| С  | -3.216677 | -0.107121 | 5.160139  |
|    |           |           |           |

| С | -3.997724 | -0.164449 | 6.379878  |
|---|-----------|-----------|-----------|
| Η | 1.506776  | 0.022981  | -1.496284 |
| Η | 3.179464  | 0.166025  | 0.705076  |
| Η | 1.658532  | -0.865487 | 3.621381  |
| Η | 2.839794  | 0.369883  | 3.133733  |
| Η | 1.224780  | 0.875185  | 3.685663  |
| Η | -1.949730 | -0.770634 | -0.323859 |
| Η | -1.594024 | 0.825636  | -1.030403 |
| Η | -0.901536 | -0.652523 | -1.752503 |
| Н | -5.434936 | 2.625582  | -0.307573 |
| Η | -6.246232 | 2.184268  | 1.208632  |
| Η | -5.115134 | 3.556527  | 1.171671  |
| Η | -4.047124 | 0.827422  | 6.833698  |
| Η | -5.008794 | -0.510189 | 6.155054  |
| Η | -3.531952 | -0.858745 | 7.082426  |

| Sum of electronic and zero-point      | t Energies= -3349.647221    |
|---------------------------------------|-----------------------------|
| Sum of electronic and thermal E       | Energies= -3349.624886      |
| Sum of electronic and thermal E       | Enthalpies= -3349.623942    |
| Sum of electronic and thermal F       | Free Energies= -3349.701434 |
| $\langle psi(f)   H   psi(f) \rangle$ | (a.u.) = -3349.993959       |
| <psi(f) H+V(f)/2 psi(f)>              | (a.u.) = -3350.230101       |
| Total free energy in solution:        |                             |
| with all non electrostatic terms      | (a.u.) = -3350.202864       |
|                                       |                             |

| Ν  | 0.011385  | 0.013655  | 0.010177  |
|----|-----------|-----------|-----------|
| С  | 0.012010  | -0.000847 | 1.348413  |
| Ν  | 1.279222  | -0.028922 | 1.781155  |
| С  | 2.116849  | -0.042968 | 0.674434  |
| С  | 1.327309  | -0.014206 | -0.428098 |
| Cu | -1.577342 | -0.079966 | 2.405603  |
| F  | -1.778853 | -1.761981 | 1.855523  |
| С  | 1.741524  | -0.014944 | 3.176734  |
| С  | -1.171728 | 0.023173  | -0.863568 |
| Ν  | -3.336728 | -0.233618 | 3.578802  |
| С  | -4.347921 | 0.778122  | 3.143239  |
| С  | -5.705607 | 0.518132  | 3.842062  |
| Ν  | -5.482636 | -0.417758 | 5.018393  |
| С  | -5.068974 | -1.780343 | 4.485701  |
| С  | -3.946288 | -1.594050 | 3.440428  |
| С  | -4.328225 | 0.132575  | 5.840683  |
| С  | -3.021773 | 0.001403  | 5.020171  |
|    |           |           |           |

| С  | -6.707462 | -0.511414 | 5.916427  |
|----|-----------|-----------|-----------|
| Cl | -8.160717 | -1.020178 | 5.047397  |
| Cl | -1.198993 | 1.966193  | 2.875755  |
| Η  | 3.188412  | -0.085656 | 0.773988  |
| Η  | 1.577253  | -0.028246 | -1.475628 |
| Η  | -1.662113 | 0.996043  | -0.815616 |
| Η  | -0.843505 | -0.158974 | -1.884336 |
| Η  | -1.845610 | -0.776079 | -0.558354 |
| Η  | 1.656483  | 0.990736  | 3.587162  |
| Н  | 1.155449  | -0.720136 | 3.764490  |
| Н  | 2.782047  | -0.331652 | 3.193551  |
| Η  | -6.427673 | 0.039108  | 3.184533  |
| Н  | -6.145718 | 1.438375  | 4.226241  |
| Η  | -4.475768 | 0.710427  | 2.063020  |
| Η  | -3.959524 | 1.768075  | 3.375318  |
| Η  | -4.744405 | -2.366375 | 5.346237  |
| Н  | -5.948232 | -2.253582 | 4.052817  |
| Η  | -3.174956 | -2.350536 | 3.563503  |
| Н  | -4.324836 | -1.691561 | 2.424532  |
| Н  | -2.419113 | -0.835594 | 5.374250  |
| Н  | -2.434134 | 0.913534  | 5.112371  |
| Η  | -4.275062 | -0.431697 | 6.771714  |
| Н  | -4.567807 | 1.170109  | 6.074203  |
| Η  | -6.485721 | -1.240156 | 6.693313  |
| Η  | -6.875241 | 0.474895  | 6.344255  |

| Sum of electronic and zero-point Energies= -2538.117765                                             |                |                |                    |              |
|-----------------------------------------------------------------------------------------------------|----------------|----------------|--------------------|--------------|
| Sum of electronic and thermal Energies= -2538.101772                                                |                |                |                    |              |
| Sur                                                                                                 | n of electron  | ic and therm   | nal Enthalpies=    | -2538.100828 |
| Sur                                                                                                 | n of electron  | ic and therm   | nal Free Energies= | -2538.166779 |
| <psi< td=""><td>i(f)  H  ps</td><td>i(f)&gt;</td><td>(a.u.) = -2533</td><td>8.289823</td></psi<>    | i(f)  H  ps    | i(f)>          | (a.u.) = -2533     | 8.289823     |
| <ps< td=""><td>i(f) H+V(f) </td><td>2 psi(f)&gt;</td><td>(a.u.) = -1</td><td>2538.366438</td></ps<> | i(f) H+V(f)    | 2 psi(f)>      | (a.u.) = -1        | 2538.366438  |
| Tot                                                                                                 | al free energ  | y in solution  | 1:                 |              |
| wi                                                                                                  | th all non ele | ectrostatic te | rms $(a.u.) =$     | -2538.340893 |
|                                                                                                     |                |                | · · ·              |              |
| Ν                                                                                                   | 0.002768       | 0.013254       | -0.003041          |              |
| С                                                                                                   | -0.000987      | 0.014303       | 1.377189           |              |
| С                                                                                                   | 1.299018       | -0.000592      | 1.774607           |              |
| Ν                                                                                                   | 2.067518       | -0.010431      | 0.628157           |              |
| С                                                                                                   | 1.273956       | 0.019958       | -0.468021          |              |
| С                                                                                                   | 3.533288       | -0.042948      | 0.612125           |              |
| Cu                                                                                                  | 1.836605       | -0.069411      | -2.310802          |              |
| Cl                                                                                                  | 1.841362       | -2.264794      | -2.439149          |              |

| С | -1.204055 | 0.011195  | -0.835716 |
|---|-----------|-----------|-----------|
| Ν | 2.385735  | 0.612309  | -4.069092 |
| С | 2.717233  | 0.854302  | -5.142880 |
| С | 3.134939  | 1.150282  | -6.496610 |
| Η | 1.731366  | -0.008277 | 2.760725  |
| Η | -0.910811 | 0.022012  | 1.953016  |
| Η | -0.978494 | -0.466851 | -1.787491 |
| Н | -1.978911 | -0.566710 | -0.334356 |
| Н | -1.556520 | 1.030634  | -0.999260 |
| Н | 3.868228  | -0.530888 | -0.301711 |
| Н | 3.938149  | 0.968436  | 0.670573  |
| Н | 3.883493  | -0.625606 | 1.462745  |
| Η | 3.223892  | 0.219137  | -7.061287 |
| Н | 2.396961  | 1.795367  | -6.978586 |
| Η | 4.102559  | 1.656807  | -6.482078 |
|   |           |           |           |

| Sum of electronic and zero-point      | Energies=      | -2405.317478 |
|---------------------------------------|----------------|--------------|
| Sum of electronic and thermal E       | nergies=       | -2405.306572 |
| Sum of electronic and thermal E       | nthalpies=     | -2405.305628 |
| Sum of electronic and thermal F       | ree Energies=  | -2405.358722 |
| $\langle psi(f)   H   psi(f) \rangle$ | (a.u.) = -2403 | 5.435347     |
| <psi(f) H+V(f)/2 psi(f)>              | (a.u.) = -     | 2405.530603  |
| Total free energy in solution:        |                |              |
| with all non electrostatic terms      | (a.u.) =       | -2405.512655 |
|                                       | . ,            |              |
|                                       |                |              |

| Ν  | 0.003065  | -0.001592 | 0.015457  |
|----|-----------|-----------|-----------|
| С  | 0.005523  | 0.000772  | 1.383614  |
| Ν  | 1.328986  | -0.001588 | 1.730467  |
| С  | 2.119195  | 0.008249  | 0.619025  |
| С  | 1.277660  | 0.008263  | -0.469458 |
| Cu | -1.507987 | -0.005768 | 2.553808  |
| Cl | -3.149499 | -0.186277 | 3.823473  |
| С  | 1.844291  | 0.007805  | 3.107295  |
| С  | -1.199668 | 0.007825  | -0.829898 |
| Н  | 1.505532  | 0.016169  | -1.522996 |
| Н  | 3.196166  | 0.016141  | 0.663753  |
| Н  | 1.017172  | -0.149284 | 3.796170  |
| Н  | 2.568700  | -0.796959 | 3.228874  |
| Н  | 2.315180  | 0.968166  | 3.318774  |
| Н  | -2.074585 | -0.149438 | -0.202888 |
| Η  | -1.285861 | 0.968253  | -1.338721 |
| Η  | -1.134872 | -0.796824 | -1.561700 |
|    |           |           |           |

| Sum of electronic and zero-point      | Energies= -2803.656608      |
|---------------------------------------|-----------------------------|
| Sum of electronic and thermal E       | Energies= -2803.629757      |
| Sum of electronic and thermal E       | Enthalpies= -2803.628812    |
| Sum of electronic and thermal F       | Free Energies= -2803.722869 |
| $\langle psi(f)   H   psi(f) \rangle$ | (a.u.) = -2803.922182       |
| <psi(f) H+V(f)/2 psi(f)>              | (a.u.) = -2803.990528       |
| Total free energy in solution:        |                             |
| with all non electrostatic terms      | (a.u.) = -2803.948513       |
|                                       |                             |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1549  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52229 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6262  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98596 |
| Cu $-1.639113$ $0.110412$ $2.51$ N $-1.152708$ $0.786575$ $4.76$ C $-1.176235$ $1.679507$ $5.49$ C $-1.214048$ $2.827911$ $6.38$ C $1.806605$ $0.026474$ $3.08$ C $-1.185553$ $0.034102$ $-0.85$ N $-3.693663$ $-0.056378$ $2.91$ C $-4.824799$ $0.121274$ $3.01$ C $-6.249314$ $0.375493$ $3.11$ CI $-1.962727$ $2.275357$ $1.86$ N $-1.469107$ $-1.928384$ $3.10$ C $-1.302739$ $-4.422021$ $3.83$ H $1.531959$ $-0.005292$ $-1.53$ H $3.196651$ $-0.023568$ $0.67$ H $0.973112$ $-0.075327$ $3.77$ H $2.513424$ $-0.790121$ $3.24$ H $-0.901080$ $0.380227$ $-1.84$ H $-1.615967$ $-0.965883$ $-0.92$ H $-1.116924$ $-4.483473$ $4.90$ H $-0.486137$ $-4.913668$ $3.29$ H $-0.486137$ $-4.913668$ $3.29$ H $-6.579654$ $0.228788$ $4.14$          | 31876 |
| N $-1.152708$ $0.786575$ $4.766$ C $-1.176235$ $1.679507$ $5.49$ C $-1.214048$ $2.827911$ $6.38$ C $1.806605$ $0.026474$ $3.08$ C $-1.185553$ $0.034102$ $-0.85$ N $-3.693663$ $-0.056378$ $2.91$ C $-4.824799$ $0.121274$ $3.01$ C $-6.249314$ $0.375493$ $3.11$ CI $-1.962727$ $2.275357$ $1.866$ N $-1.469107$ $-1.928384$ $3.10$ C $-1.394081$ $-3.030479$ $3.422$ C $-1.302739$ $-4.422021$ $3.83$ H $1.531959$ $-0.005292$ $-1.53$ H $3.196651$ $-0.023568$ $0.67$ H $0.973112$ $-0.075327$ $3.77$ H $2.513424$ $-0.790121$ $3.244$ H $-0.901080$ $0.380227$ $-1.844$ H $-1.615967$ $-0.965883$ $-0.925$ H $-1.116924$ $-4.483473$ $4.902$ H $-2.237831$ $-4.937137$ $3.602$ H $-0.486137$ $-4.913668$ $3.292$ H $-6.579654$ $0.228788$ $4.14$ | 10198 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59935 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96926 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34896 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7245  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51175 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17109 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0814  |
| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8809  |
| N -1.469107 -1.928384 3.10   C -1.394081 -3.030479 3.42   C -1.302739 -4.422021 3.83   H 1.531959 -0.005292 -1.53   H 3.196651 -0.023568 0.67   H 0.973112 -0.075327 3.77   H 2.513424 -0.790121 3.24   H 2.306814 0.978861 3.27   H -1.909161 0.728414 -0.42   H -0.901080 0.380227 -1.84   H -1.615967 -0.965883 -0.93   H -1.116924 -4.483473 4.90   H -2.237831 -4.937137 3.60   H -0.486137 -4.913668 3.29   H -6.579654 0.228788 4.14                                                                                                                                                                                                                                                                                                          | 52954 |
| C-1.394081-3.0304793.42C-1.302739-4.4220213.83H1.531959-0.005292-1.53H3.196651-0.0235680.67H0.973112-0.0753273.77H2.513424-0.7901213.24H2.3068140.9788613.27H-1.9091610.728414-0.42H-0.9010800.380227-1.84H-1.615967-0.965883-0.93H-1.116924-4.4834734.90H-0.486137-4.9136683.29H-6.5796540.2287884.14                                                                                                                                                                                                                                                                                                                                                                                                                                               | 08661 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25442 |
| H1.531959-0.005292-1.53H3.196651-0.0235680.67H0.973112-0.0753273.77H2.513424-0.7901213.24H2.3068140.9788613.27H-1.9091610.728414-0.42H-0.9010800.380227-1.84H-1.615967-0.965883-0.93H-1.116924-4.4834734.90H-2.237831-4.9371373.60H-0.486137-4.9136683.29H-6.5796540.2287884.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30571 |
| H3.196651-0.0235680.67H0.973112-0.0753273.77H2.513424-0.7901213.24H2.3068140.9788613.27H-1.9091610.728414-0.42H-0.9010800.380227-1.84H-1.615967-0.965883-0.93H-1.116924-4.4834734.90H-2.237831-4.9371373.60H-0.486137-4.9136683.29H-6.5796540.2287884.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34367 |
| H0.973112-0.0753273.77H2.513424-0.7901213.24H2.3068140.9788613.27H-1.9091610.728414-0.42H-0.9010800.380227-1.84H-1.615967-0.965883-0.92H-1.116924-4.4834734.90H-2.237831-4.9371373.60H-0.486137-4.9136683.29H-6.5796540.2287884.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70808 |
| H2.513424-0.7901213.24H2.3068140.9788613.27H-1.9091610.728414-0.42H-0.9010800.380227-1.84H-1.615967-0.965883-0.93H-1.116924-4.4834734.90H-2.237831-4.9371373.60H-0.486137-4.9136683.29H-6.5796540.2287884.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76158 |
| H2.3068140.9788613.27H-1.9091610.728414-0.42H-0.9010800.380227-1.84H-1.615967-0.965883-0.92H-1.116924-4.4834734.90H-2.237831-4.9371373.60H-0.486137-4.9136683.29H-6.5796540.2287884.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11797 |
| H-1.9091610.728414-0.42H-0.9010800.380227-1.84H-1.615967-0.965883-0.92H-1.116924-4.4834734.90H-2.237831-4.9371373.60H-0.486137-4.9136683.29H-6.5796540.2287884.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /1083 |
| H-0.9010800.380227-1.84H-1.615967-0.965883-0.93H-1.116924-4.4834734.90H-2.237831-4.9371373.60H-0.486137-4.9136683.29H-6.5796540.2287884.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27612 |
| H-1.615967-0.965883-0.93H-1.116924-4.4834734.90H-2.237831-4.9371373.60H-0.486137-4.9136683.29H-6.5796540.2287884.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43616 |
| H -1.116924 -4.483473 4.90<br>H -2.237831 -4.937137 3.60<br>H -0.486137 -4.913668 3.29<br>H -6.579654 0.228788 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30422 |
| H -2.237831 -4.937137 3.60<br>H -0.486137 -4.913668 3.29<br>H -6.579654 0.228788 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04781 |
| H -0.486137 -4.913668 3.29<br>H -6.579654 0.228788 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01564 |
| Н -6.579654 0.228788 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98176 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18976 |
| Н -6.457529 1.404865 2.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8759  |

| Η | -6.801460 | -0.304449 | 2.467060 |
|---|-----------|-----------|----------|
| Η | -1.497469 | 3.715218  | 5.814247 |
| Η | -1.943085 | 2.665948  | 7.181114 |
| Н | -0.231528 | 2.991416  | 6.831899 |

| Sum of electronic and zero-point Energies= -2638.228628                                              |                                                      |                 |                   |              |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------|-------------------|--------------|
| Su                                                                                                   | Sum of electronic and thermal Energies= -2638.211225 |                 |                   |              |
| Su                                                                                                   | m of electror                                        | nic and therm   | al Enthalpies=    | -2638.210281 |
| Su                                                                                                   | m of electror                                        | nic and therm   | al Free Energies= | -2638.279312 |
| <ps< td=""><td>i(f)  H  ps</td><td>si(f)&gt;</td><td>(a.u.) = -263</td><td>38.400723</td></ps<>      | i(f)  H  ps                                          | si(f)>          | (a.u.) = -263     | 38.400723    |
| <ps< td=""><td>si(f) H+V(f)/</td><td>2 psi(f)&gt;</td><td>(a.u.) = -</td><td>-2638.439643</td></ps<> | si(f) H+V(f)/                                        | 2 psi(f)>       | (a.u.) = -        | -2638.439643 |
| Tot                                                                                                  | tal free energ                                       | gy in solution  | 1:                |              |
| wi                                                                                                   | th all non ele                                       | ectrostatic ter | rms $(a.u.) =$    | -2638.413782 |
| C                                                                                                    | 0.067814                                             | -0 1/2780       | -0 108108         |              |
| N                                                                                                    | -0.007814                                            | 0.097862        | 1 216560          |              |
| $\hat{\mathbf{C}}$                                                                                   | 1 119615                                             | 0.326146        | 1.210500          |              |
| C                                                                                                    | 2.067319                                             | 0.216793        | 0.870562          |              |
| N                                                                                                    | 1 404360                                             | -0.063132       | -0 311904         |              |
| C                                                                                                    | -1 388454                                            | 0 168973        | 1 901758          |              |
| Č                                                                                                    | 2.077215                                             | -0.299104       | -1.592800         |              |
| Cu                                                                                                   | -1.331582                                            | -0.576299       | -1.481077         |              |
| F                                                                                                    | -0.498114                                            | 0.438037        | -2.828938         |              |
| Cl                                                                                                   | -2.162381                                            | -2.402601       | -0.400250         |              |
| Н                                                                                                    | 3.138525                                             | 0.309375        | 0.922469          |              |
| Н                                                                                                    | 1.203306                                             | 0.544778        | 2.884155          |              |
| Н                                                                                                    | -2.080807                                            | -0.514693       | 1.414134          |              |
| Η                                                                                                    | -1.254613                                            | -0.140837       | 2.938392          |              |
| Η                                                                                                    | -1.777868                                            | 1.189306        | 1.875962          |              |
| Н                                                                                                    | 1.366127                                             | -0.078264       | -2.389565         |              |
| Н                                                                                                    | 2.936308                                             | 0.369018        | -1.664837         |              |
| Η                                                                                                    | 2.416652                                             | -1.335765       | -1.649629         |              |
| Ν                                                                                                    | -3.092096                                            | -0.415053       | -2.607958         |              |
| С                                                                                                    | -3.976145                                            | -0.448289       | -3.338485         |              |
| С                                                                                                    | -5.091493                                            | -0.500204       | -4.266538         |              |
| Η                                                                                                    | -5.464612                                            | -1.523745       | -4.338783         |              |
| Η                                                                                                    | -5.898118                                            | 0.147525        | -3.917700         |              |
| Η                                                                                                    | -4.768368                                            | -0.165780       | -5.254216         |              |

Cu<sup>0</sup>F

| Cu | 0.000000 | 0.000000 | -0.006632 |
|----|----------|----------|-----------|
| F  | 0.000000 | 0.000000 | 1.874508  |

 $\mathbf{Cu}^{\mathbf{0}}$ 

| Sum of electronic and zero-point      | Energies=      | -1640.472257 |
|---------------------------------------|----------------|--------------|
| Sum of electronic and thermal E       | inergies=      | -1640.470841 |
| Sum of electronic and thermal E       | Inthalpies=    | -1640.469897 |
| Sum of electronic and thermal F       | ree Energies=  | -1640.488767 |
| $\langle psi(f)   H   psi(f) \rangle$ | (a.u.) = -1640 | .472204      |
| <psi(f) H+V(f)/2 psi(f)>              | (a.u.) = -1    | 640.473461   |
| Total free energy in solution:        |                |              |
| with all non electrostatic terms      | (a.u.) =       | -1640.466967 |

## Cu<sup>0</sup>(MeCN)

| С  | 0.001545  | -0.000072 | 0.010406  |
|----|-----------|-----------|-----------|
| С  | 0.007994  | 0.000976  | 1.462869  |
| Ν  | 0.042369  | 0.002465  | 2.616595  |
| Cu | 0.930887  | -0.000937 | 4.433447  |
| Н  | -0.585528 | -0.842140 | -0.361794 |
| Н  | -0.436123 | 0.928118  | -0.362705 |
| Н  | 1.023513  | -0.086541 | -0.367411 |

## Cu<sup>0</sup>(MeCN)<sub>2</sub>

| Sum of electronic and zero-point               | Energies= -1905.997152     |
|------------------------------------------------|----------------------------|
| Sum of electronic and thermal E                | nergies= -1905.986533      |
| Sum of electronic and thermal E                | nthalpies= -1905.985589    |
| Sum of electronic and thermal F                | ree Energies= -1906.037347 |
| <pre><psi(f)  h=""  psi(f)=""></psi(f) ></pre> | (a.u.) = -1906.081731      |
| <psi(f) H+V(f)/2 psi(f)>                       | (a.u.) = -1906.105859      |
| Total free energy in solution:                 |                            |
| with all non electrostatic terms               | (a.u.) = -1906.087375      |

| С  | -0.048360 | 0.004246  | 0.076708  |
|----|-----------|-----------|-----------|
| С  | 0.085263  | -0.006458 | 1.520591  |
| Ν  | 0.123841  | -0.011927 | 2.676436  |
| Cu | 0.050291  | -0.014558 | 4.514122  |
| Ν  | 0.108622  | -0.023742 | 6.316409  |
| С  | -0.023229 | -0.021106 | 7.510710  |
| С  | -1.172787 | 0.033154  | 8.472079  |
| Н  | -1.104785 | 0.019295  | -0.210941 |
| Н  | 0.441718  | 0.888324  | -0.337274 |
| Η  | 0.420043  | -0.885578 | -0.349937 |
| Н  | -2.135004 | 0.083876  | 7.939179  |
| Н  | -1.159269 | -0.850652 | 9.114462  |
| Н  | -1.070555 | 0.905883  | 9.121559  |

### Cu<sup>0</sup>(MeCN)<sub>3</sub>

Sum of electronic and zero-point Energies= -2038.747849 Sum of electronic and thermal Energies= -2038.731500 Sum of electronic and thermal Enthalpies= -2038.730556 Sum of electronic and thermal Free Energies= -2038.799169  $\langle psi(f) | H | psi(f) \rangle$ (a.u.) = -2038.875698<psi(f)|H+V(f)/2|psi(f)> (a.u.) = -2038.909134Total free energy in solution: with all non electrostatic terms (a.u.) = -2038.882446С 0.005961 0.068632 0.075701 С 0.023301 0.041350 1.575385 Ν 0.845746 0.003418 2.444312 Cu 2.259221 -0.054537 3.663057 Ν 2.976029 -1.726623 4.432417 С 3.337229 -2.774641 4.755835 С 3.806042 -4.102870 5.108934 Ν 3.078042 1.541719 4.485017 С 3.511347 2.550952 4.841692 С 4.072377 3.830970 5.235951 Η -0.553445 -0.787739 -0.308630 Η -0.499591 0.971043 -0.276649 Η 1.031253 -0.330136 0.044721 Η 2.956204 -4.766992 5.281556 Η 4.414228 -4.517005 4.298965 Η 4.410673 -4.064167 6.017553 Η 4.684179 3.718135 6.133524 Η 4.697062 4.233558 4.432701 Η 3.271352 4.543467 5.445191

# Calculated energies and coordinates (B3LYP/6-311+G\*\*// B3LYP/6-311+G\*\*//B3LYP/LANL2DZ):

3

#### LANL2DZ:

| Electronic energy = $-515.979460826$                                                                |                                                          |                 |                |              |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------|----------------|--------------|--|--|
| Sum of electronic and zero-point Energies= -515.848580                                              |                                                          |                 |                |              |  |  |
| Sum of electronic and thermal Energies= -515.837915                                                 |                                                          |                 |                |              |  |  |
| Sum of electronic and thermal Enthalpies= -515.836                                                  |                                                          |                 |                |              |  |  |
| Su                                                                                                  | Sum of electronic and thermal Free Energies= -515.887116 |                 |                |              |  |  |
|                                                                                                     |                                                          |                 | -              |              |  |  |
| 6-3                                                                                                 | 11+G**:                                                  |                 |                |              |  |  |
|                                                                                                     |                                                          |                 |                |              |  |  |
| <ps< td=""><td>i(f)  H  ps</td><td>i(f)&gt;</td><td>(a.u.) = -240</td><td>5.736092</td></ps<>       | i(f)  H  ps                                              | i(f)>           | (a.u.) = -240  | 5.736092     |  |  |
| <ps< td=""><td>si(f) H+V(f)/</td><td>2 psi(f)&gt;</td><td>(a.u.) = -</td><td>2405.767052</td></ps<> | si(f) H+V(f)/                                            | 2 psi(f)>       | (a.u.) = -     | 2405.767052  |  |  |
| To                                                                                                  | tal free energ                                           | gy in solution  | 1:             |              |  |  |
| wi                                                                                                  | th all non ele                                           | ectrostatic ter | rms $(a.u.) =$ | -2405.748824 |  |  |
|                                                                                                     |                                                          |                 |                |              |  |  |
| С                                                                                                   | -0.020222                                                | -0.046213       | -0.014913      |              |  |  |
| Ν                                                                                                   | -0.002116                                                | 0.000614        | 1.365147       |              |  |  |
| С                                                                                                   | 1.309600                                                 | 0.074166        | 1.856122       |              |  |  |
| С                                                                                                   | 2.139424                                                 | 0.073477        | 0.763094       |              |  |  |
| Ν                                                                                                   | 1.313968                                                 | -0.000481       | -0.368373      |              |  |  |
| С                                                                                                   | -1.206465                                                | -0.022290       | 2.207748       |              |  |  |
| С                                                                                                   | 1.801918                                                 | -0.024811       | -1.754831      |              |  |  |
| Cu                                                                                                  | -1.543559                                                | -0.145518       | -1.171357      |              |  |  |
| Cl                                                                                                  | -3.275987                                                | -0.258608       | -2.486532      |              |  |  |
| Η                                                                                                   | 3.214740                                                 | 0.117508        | 0.701597       |              |  |  |
| Η                                                                                                   | 1.539361                                                 | 0.118903        | 2.908374       |              |  |  |
| Η                                                                                                   | -2.083364                                                | -0.088847       | 1.560085       |              |  |  |
| Н                                                                                                   | -1.189726                                                | -0.891182       | 2.874761       |              |  |  |
| Η                                                                                                   | -1.273331                                                | 0.894187        | 2.804267       |              |  |  |
| Н                                                                                                   | 0.942382                                                 | -0.091237       | -2.425379      |              |  |  |
| Н                                                                                                   | 2.359211                                                 | 0.891079        | -1.980237      |              |  |  |
| Н                                                                                                   | 2.448245                                                 | -0.894311       | -1.917291      |              |  |  |
|                                                                                                     |                                                          |                 |                |              |  |  |

#### 4

LANL2DZ:

| Electronic energy = $-498.663418322$       |             |
|--------------------------------------------|-------------|
| Sum of electronic and zero-point Energies= | -498.441766 |
| Sum of electronic and thermal Energies=    | -498.431821 |
| Sum of electronic and thermal Enthalpies=  | -498.430877 |

6-311+G\*\*:

| <pre><psi(f)  h=""  psi(f)=""></psi(f) ></pre> |                 | i(f)>          | (a.u.) = -944.120943       |  |
|------------------------------------------------|-----------------|----------------|----------------------------|--|
| <psi(f) h+v(f) 2 psi(f)=""></psi(f) h+v(f)>    |                 |                | (a.u.) = -944.412844       |  |
| Total free energy in solution:                 |                 |                |                            |  |
| W                                              | ith all non ele | ectrostatic te | rms $(a.u.) = -944.401246$ |  |
|                                                |                 |                |                            |  |
|                                                |                 |                |                            |  |
| С                                              | -1.047266       | 1.025197       | -0.979573                  |  |
| С                                              | -1.404767       | 2.452930       | -0.461939                  |  |
| Η                                              | -0.782985       | 1.029371       | -2.040127                  |  |
| Η                                              | -1.888007       | 0.343404       | -0.827703                  |  |
| Η                                              | -1.578257       | 3.154663       | -1.281825                  |  |
| Η                                              | -2.266265       | 2.468050       | 0.209647                   |  |
| С                                              | 1.419593        | 1.315422       | -0.599411                  |  |
| Η                                              | 2.237574        | 1.029005       | 0.063132                   |  |
| Η                                              | 1.692297        | 1.049555       | -1.623772                  |  |
| С                                              | 1.082402        | 2.835300       | -0.495554                  |  |
| Η                                              | 1.864986        | 3.392827       | 0.025391                   |  |
| Η                                              | 0.891840        | 3.305707       | -1.462975                  |  |
| С                                              | -0.060664       | 2.201927       | 1.654466                   |  |
| Η                                              | 0.873980        | 2.526444       | 2.117610                   |  |
| Η                                              | -0.897899       | 2.496334       | 2.292546                   |  |
| С                                              | -0.089012       | 0.680514       | 1.317607                   |  |
| Η                                              | 0.684128        | 0.147239       | 1.874715                   |  |
| Η                                              | -1.059789       | 0.229921       | 1.540035                   |  |
| F                                              | -0.410775       | 4.350094       | 0.628326                   |  |
| С                                              | 0.355828        | -1.012753      | -0.540533                  |  |
| Η                                              | -0.510005       | -1.554857      | -0.157952                  |  |
| Η                                              | 0.450255        | -1.102541      | -1.623405                  |  |
| Cl                                             | 1.862530        | -1.703260      | 0.236996                   |  |
| Ν                                              | -0.196216       | 2.943164       | 0.327994                   |  |
| Ν                                              | 0.174964        | 0.488708       | -0.194125                  |  |

## TS<sub>3</sub>

LANL2DZ:

| Electronic energy = $-1014.71676194$         |              |
|----------------------------------------------|--------------|
| Sum of electronic and zero-point Energies=   | -1014.365128 |
| Sum of electronic and thermal Energies=      | -1014.342545 |
| Sum of electronic and thermal Enthalpies=    | -1014.341601 |
| Sum of electronic and thermal Free Energies= | -1014.422326 |
|                                              |              |
6-311+G\*\*:

| (a.u.) = -3349.929152 |
|-----------------------|
| (a.u.) = -3350.171640 |
|                       |
| (a.u.) = -3350.139519 |
|                       |

| Ν  | -0.063532 | 0.116465  | 0.102371  |
|----|-----------|-----------|-----------|
| С  | 0.078830  | 0.245055  | 1.639784  |
| С  | 1.585133  | -0.001430 | 2.022221  |
| Ν  | 2.279083  | -0.477808 | 0.807214  |
| С  | 1.680784  | -1.714192 | 0.262707  |
| С  | 0.269118  | -1.334433 | -0.323489 |
| С  | 2.409376  | 0.587594  | -0.215183 |
| С  | 0.956728  | 1.075336  | -0.569001 |
| С  | -1.466282 | 0.524076  | -0.366918 |
| Cl | -2.781392 | -0.484114 | 0.429248  |
| F  | 4.289985  | -0.672853 | 1.431076  |
| Cu | 5.590781  | 0.630111  | 1.705001  |
| F  | 5.102201  | 2.338469  | 1.329276  |
| С  | 7.202046  | -0.263228 | 2.249124  |
| Ν  | 7.492259  | -1.562510 | 2.551095  |
| С  | 8.848144  | -1.668152 | 2.890219  |
| С  | 9.392913  | -0.410035 | 2.782995  |
| Ν  | 8.364650  | 0.450681  | 2.379540  |
| С  | 6.556676  | -2.707544 | 2.551395  |
| С  | 8.549552  | 1.905853  | 2.148492  |
| Н  | 9.302016  | -2.603109 | 3.177472  |
| Н  | 10.399569 | -0.066250 | 2.960653  |
| Н  | 8.905896  | 2.378582  | 3.067872  |
| Η  | 9.280010  | 2.058548  | 1.349192  |
| Н  | 7.602257  | 2.367707  | 1.858162  |
| Н  | 6.477386  | -3.116964 | 3.562826  |
| Н  | 5.576739  | -2.368796 | 2.214137  |
| Н  | 6.927851  | -3.481767 | 1.873662  |
| Н  | 1.661965  | -0.754219 | 2.809429  |
| Η  | 2.062981  | 0.917358  | 2.367774  |
| Н  | -0.588787 | -0.490866 | 2.090193  |
| Η  | -0.255425 | 1.246925  | 1.921589  |
| Η  | 1.592189  | -2.452540 | 1.062329  |
| Η  | 2.323599  | -2.121957 | -0.520236 |
| Η  | 0.258822  | -1.357205 | -1.416604 |
| Н  | -0.519600 | -1.986414 | 0.055902  |
| Η  | 0.773216  | 1.060915  | -1.646528 |

| Η | 0.759204  | 2.079180 | -0.183546 |
|---|-----------|----------|-----------|
| Η | 2.915453  | 0.179198 | -1.092442 |
| Η | 3.008431  | 1.409986 | 0.181312  |
| Η | -1.530912 | 0.366876 | -1.443699 |
| Η | -1.632742 | 1.567006 | -0.097302 |