Supporting Information

Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character

James W. Rice*, Jinxia Fu, Eric M. Suuberg Brown University Division of Engineering Providence, RI USA 02912 401-863-2775 (p) 401-863-9120 (f) James_Rice@Brown.edu

System	$T_{\rm fus,1}/{\rm K}$	$T_{\rm fus,2}/{\rm K}$	$x_{1,e1}$	$T_{\rm fus,e1}/{\rm K}$	$x_{1,e2}$	$T_{\rm fus,e2}/{\rm K}$
p-dimethylaminobenzaldehyde (1) + resorcinol $(2)^8$	348	382.6	0.2695	322.05	0.7209	317.05
2,4-dinitrophenol (1) + naphthalene $(2)^{9,10}$	353	378	0.3158	358	0.5	367
p-benzoquinone (1) + pyrene $(2)^{11}$	388	423	0.324	392	0.792	376
m-dinitrobenzene (1) + pyrene $(2)^{11}$	362	423	0.301	363	0.702	361
m-nitrobenzoic acid (1) + pyrene $(2)^{11}$	413	423	0.299	403	0.902	413
m-dinitrobenzene (1) + phenothiazine $(2)^{12}$	362	457	0.302	345	0.699	343
m-nitrobenzoic acid (1) + phenothiazine $(2)^{12}$	413	457	0.438	400	0.8	390

Table S1. Melting temperatures of previously reported binary organic componentmixtures that form two eutectics.

Table S2. Enthalpy of fusion of previously reported binary organic component mixtures that form one eutectic.

System	$\Delta_{\rm fus} H_1/{ m J}\cdot{ m g}^{-1}$	$\Delta_{\rm fus}H_2/{ m J}\cdot{ m g}^{-1}$	x_1	$\Delta_{\rm fus} H_{\rm e}/{\rm J}{\cdot}{\rm g}^{-1}$	$E_{\rm inter}$ /J·g ⁻¹
benzamide (1) + benzoic acid $(2)^6$	191.04	152.70	0.5122	144.68	-27.66
o-chloro benzoic acid (1) + benzoic acid $(2)^7$	175.86	152.70	0.3292	137.44	-22.88

System	$\Delta_{\rm fus}H_1/{ m J}$	$\Delta_{\rm fus}H_2/{ m J}$	<i>x</i> _{1,e1}	$\Delta_{\rm fus}H_{\rm el}/{\rm J}$	$E_{\text{inter},1}$	<i>x</i> _{1,e2}	$\Delta_{\rm fus}H_{\rm e2}/{\rm J}$	$E_{\text{inter},2}$
	•g ⁻¹	g ⁻¹		·g ⁻¹	J·g ⁻¹		•g ⁻¹	J·g ⁻¹
	10(01	202.02	0.005	1.40.11	45.10	0.5000	122.12	15.50
p-dimethylaminobenzaldehyde	126.01	207.07	0.2695	140.11	-45.12	0.7209	133.12	-15.52
(1) + resorcinol $(2)^{\circ}$								
p-benzoquinone (1) + pyrene	181.32	86.03	0.324	58.81	-58.09	0.792	141.76	-19.74
$(2)^{11}$								
m-dinitrobenzene (1) + pyrene	143.95	86.03	0.301	55.22	-48.25	0.702	84.14	-42.55
$(2)^{11}$								
m-nitrobenzoic acid (1) +	95.14	86.03	0.299	79.79	8.96	0.902	83.25	10.99
pyrene $(2)^{11}$								
m-dinitrobenzene (1) +	143.95	142.52	0.302	80.59	-62.37	0.699	90.71	-52.81
phenothiazine $(2)^{12}$								
m-nitrobenzoic acid (1) +	95.14	142.52	0.438	72.36	-49.41	0.800	87.58	-17.03
phenothiazine $(2)^{12}$								

Table S3. Enthalpy of fusion of previously reported binary organic component mixtures that form two eutectics.

Figure S1. Magnified portion of X-ray diffraction pattern from Figure 4 that shows the modified-pyrene peaks in the eutectic anthracene (1) + pyrene (2) mixture: B, pure (2); D, eutectic mixture $x_1 = 0.22$.

Figure S2. Vapor pressure and composition of an anthracene-rich mixture versus sample mass loss: __, P_{measured} ; . . ., $P_{1, 338.2 \text{ K}}$; _ _ , $P_{1, 333.2 \text{ K}}$; _ . _ , $P_{\text{max}, 318.2 \text{ K}}$; _ •_, measured x_1 of solid mixture.

Figure S3. Vapor pressure and composition of a pyrene-rich mixture versus sample mass loss: ___, P_{measured} ; - - -, $P_{2, 318.2 \text{ K}}$; ____, $P_{318.2 \text{ K}}$ of azeotrope at $x_1 = 0.14$; ____, P_{max} , $x_{118.2 \text{ K}}$; ____, $P_{2, 338.2 \text{ K}}$; ..., $P_{338.2 \text{ K}}$ of azeotrope at $x_1 = 0.14$; -**u**- measured x_1 of solid mixture.