1 2	On-line Supplementary Information
3	Delayed activation of caspase-independent apoptosis during heart failure in transgenic
4	mice overexpressing caspase inhibitor, CrmA
5	
6	Soochan Bae, Parco M. Siu, Sangita Choudhury, Qingen Ke, Jun H. Choi, Young Y. Koh, Peter
7	M. Kang
8	Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School,
9	Boston, MA.
10	
11	
12	Supplemental Methods
13	Western immunoblot analyses
14	Western immunoblot analyses were preformed as described previously (3-5). Total
15	protein and cytosolic AIF were probed with an anti-AIF rabbit polyclonal antibody (BD
16	Pharmingen, San Diego, CA). The purity of the subcellular fractionations was assessed by
17	immunoblot analysis with anti-GAPDH (a cytosolic protein; RDI, Flanders, NJ) and anti-COXIV
18	(a mitochondrial protein; Molecular Probes, Eugene, OR) antibodies. The inhibitor of caspase-
19	activated DNase (ICAD) antibodies were obtained from BD Pharmingen (San Diego, CA).
20	
21	Immunohistochemistry
22	Frozen 5 μ m-thick ventricle muscle cross sections were cut in a freezing cryostat at -
23	20°C and placed on the same glass slide to control for processing differences (e.g., incubation

24 time, temperature, etc.). The sections were air dried at room temperature, fixed in 4% 25 paraformaldehyde in PBS, pH 7.4 at room temperature for 20 min. The sections were then blocked in 10% donkey serum in PBS at room temperature for 30 min following 26 27 permeabilization with 0.5% Triton in 0.02% saponin/PBS for 10 min. After washes in PBS, 28 sections were incubated with an anti-AIF rabbit polyclonal antibody (Cell Signaling Technology, 29 Danvers), overnight at 4°C followed by AlexaFluor488 secondary antibody incubation 30 (Invitrogen, Carlsbad, CA) for 2 h at room temperature. To distinguish cardiomyocyte from non 31 cardiomyocyte nuclei, we triple stained for nuclei (4',6-diamidino-2-phenylindole (DAPI) 32 staining), AIF-translocated nuclei (AIF staining), and cardiomyocytes (α-actinin staining), and 33 analyzed under a confocal fluorescence microscope (BioRad 1024 with Nikon E800)... 34 35 Caspase and PARP activity assay 36 The activities of caspase-3, -8, and -9 were determined with colorimetric assay kits (R&D 37 Systems, Minneapolis, MN) as described previously (2-4). Briefly, protein samples were added 38 to substrates of Acetyl-Asp-Glu-Val-Asp-p-nitroanilide (for caspase-3), Acetyl-Ile-Glu-Thr-Asp-39 p-nitroanilide (for caspase-8) and Acetyl-Leu-Glu-His-Asp-p-nitroanilide (for caspase-9). The 40 enzyme-catalyzed release of p-nitroanilide was measured at 405 nm. PARP activity was 41 measured at 450 nm by incorporation of biotinylated poly (ADP-ribose) using colorimetric 42 assay kits (R&D Systems) as described previously (1). 43 44 Apoptosis assays 45 Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was 46 performed using *in situ* fluorescein-based Cell Death Detection Kits, (Roche Applied Science,

Indianapolis, IN) as described previously (5). To distinguish cardiomyocyte from noncardiomyocyte nuclei, we triple stained for nuclei (4',6-diamidino-2-phenylindole (DAPI)
staining), apoptotic nuclei (TUNEL staining), and cardiomyocytes (α-actinin staining), and
analyzed the stained sections using confocal microscopy. A minimum of ~10 high power fields
with ~200 nuclei/field was counted for each sample.

57

Supplemental Table 1. Baseline morphological findings for WT and CrmA Tg mice

5	0
J	0

59		WT	CrmA
60	Body Weight (g)	29.7 ±0.4	29.6 ±1.1
61	Heart Weight (mg)	134 ± 0.3	123 ±0.3
62	Lung Weight (mg)	157 ± 0.4	151 ±0.8
63	TL (mm)	16.9 ± 0.1	16.6 ± 0.1
64	HW/TL (mg/mm)	7.5±0.3	7.4 ± 0.1
65	LW/TL (mg/mm)	8.9 ± 0.4	9.1 ±0.4
66			

67 TL = tibial length, HW/BW = heart weight to body weight ratio, HW/TL = heart weight to tibial

68 length ratio. *P <0.05 compared to WT. n=6

70

69

71

72

Supplemental Table 2. Baseline echocardiographic findings for WT and CrmA Tg mice

74					
75		WT	CrmA		
76	HR (beats/min)	506 ±21	509 ±32		
77	IVSd (mm)	0.85 ± 0.03	0.86 ± 0.05		
78	LVIDd (mm)	3.6 ± 0.01	3.5 ± 0.02		
79	LVPWd (mm)	0.97 ± 0.05	0.94±0.08		
80	FS (%)	53.4 ±1.3	52.0 ± 1.7		
81					
82	HR = heart rate, IVSd = intraventricular septum in diastole, LVIDd = left ventricular interna				
83	diameter in diastole, LVPWd = left ventricular posterior wall in diastole, FS = Fractional				
84	Shortening. *p < 0.05 compared to WT. n=6				

Shortening. p < 0.05 compared to WT. n=6

85

86

73