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The basic data gathering and processing methods are described in
the main text. The purpose of this section is to outline differences
in methods compared to other studies. Because Diefendorf et al.
(1) presented superficially similar data and results, this compar-
ison emphasizes their study’s methods vs. the present one. Ex-
cepting points 1, 3, and 7 below, most differences probably
have little effect on regression results. Nonetheless, all are listed
for completeness and to help direct future data compilations.
Note that regression results are provided with the dataset in a
separate file. Specific differences in datasets and methods
include:

1. A more comprehensive literature search identified about six
times more sites than the largest previous study (1–65).

2. Nearly all climate data were taken directly from original
publications. For North America, this contrasts with Diefen-
dorf et al. (1), who used modeled MAP and MAT values.
Although MAT values do not affect results of either this study
or Diefendorf et al. (1), a few (<2%) MAT values for non-U.S.
sites tabulated by Diefendorf et al. (1) did not correspond with
published values. Published values were used for considering
regression residuals vs. MAT in the present study.

3. Prior to regressions, data were averaged over all C3 plant
species at an individual site. Excepting Stewart et al (4), this
averaging approach differs from all other studies, which distin-
guished compositions of individual species within a site. Many
studies have restricted consideration to woody plants (a subset
of the global C3 dataset), and Diefendorf et al. (1) further
distinguished differences in isotope fractionation among plant
functional types. While their choice is crucial to a key goal of
their study, it also emphasizes sites with analyses that span
greater species diversity. For example, a single study (33) con-
stitutes almost 30% of Diefendorf et al.’s entire dataset, poten-
tially biasing regressions of global C3 δ13C values vs. MAP. For
the purposes of this study (evaluating correlations with MAP
across all C3 plant types), averaging minimizes reporting
bias and provides higher quality resolution of the correlation
between MAP and δ13C or Δ (4).

4. Several sources reported inaccurate δ13Catm, typically round-
ing values to −8‰, rather than using actual values for δ13Catm,
typically between −7.7 and −7.9‰. This does not affect
the conclusions of these studies, partly because data scatter
exceeds any introduced error by a factor of 3–5, and also
because these studies emphasize differences in Δ, rather than
absolute values. Nonetheless, this error was corrected in the
present study, although not in Diefendorf et al. (1).

5. Compositions for leaf litter and leaf cellulose, which are
enriched in 13C compared to whole fresh leaves (66), were

reported in a few studies (44, 51, 67), and used without cor-
rection by Diefendorf et al. (1). Cellulose compositions were
not used in the present study, and corrections for leaf litter vs.
whole fresh leaves were based on Dawson et al. (66).

6. Data from gardens, plantations, and experimental plots were
excluded. This differs from Diefendorf et al. (1), who included
results from gardens and experimental plots. A comprehensive
analysis of leaf compositions in natural vs. experimental
settings has not been reported, and these choices might not
influence regressions.

7. Most studies regressed data linearly, although simple logarith-
mic and polynomial functions have also been used. A linear
model may be appropriate for a regional dataset, but clearly
not for global data (Figs. 1 and 2). The simple logarithmic
function used by Diefendorf et al. (1), while far superior to
a linear model, seems inappropriate because log10ðMAPÞ
approaches negative infinity (predicted δ13C approaches infi-
nity) as MAP approaches 0. Similarly, the polynomial func-
tions proposed in other studies (9, 54) do not extrapolate
realistically to high and low MAP. For logarithmic functions,
the quality of fit is significantly improved if an offset to MAP
is used, i.e., regressing δ13C vs. log10ðMAPþmoÞ, where mo
is solved for iteratively, maximizing either R2 or F. Data at
low MAP (as low as 1–10 mm∕yr) have finite δ13C values,
which can be achieved in this functional form only with
mo > 0. For example, the preferred regression has mo ¼
300 mm∕yr and an R2 value of 0.594. Omitting mo results
in an R2 value of 0.499 and unrealistic predicted compositions
at low MAP.

Alternative Regressions: Altitude and Latitude Corrections. Altitude
and latitude corrections can be estimated in two different ways,
either by directly regressing δ13C vs. MAP, altitude, and latitude,
as described in the text, or by assuming altitude and latitude
coefficients, averaging over small MAP ranges (Table S1), and
iteratively solving for best-fit coefficients that maximize R2 or
F in regressions of the averaged data. For a regression of
δ13C vs. log10ðMAPþ 300Þ, the latter approach results in high
R2 (0.96), the same altitude coefficient (1.9e-4), and a larger
latitude coefficient (0.028). The same method may be used to
regress MAP as any function of δ13C, including logarithmic or
polynomial. Again, high R2 results (0.96), but predictions are
not substantially different from the regressions presented in
the text.
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Table S1. Binned and averaged MAP and δ13C values

Bin 0–100 100–200 200–250 250–300 300–350 350–400 400–450

MAPave 50 164 221 270 322 372 419
δ13CAve −24.74 −25.05 −25.38 −25.24 −26.02 −25.88 −26.34
n 21 18 21 22 21 33 26
Bin 450–500 500–550 550–600 600–650 650–700 700–800 800–900
MAPave 471 515 575 623 671 750 838
δ13CAve −26.63 −27.30 −27.06 −27.14 −26.60 −26.91 −27.33
n 48 28 18 22 21 27 28
Bin 900–1,100 1,100–1,300 1,300–1,600 1,600–2,000 >2;000
MAPave 990 1,194 1,477 1,792 2,584
δ13CAve −27.64 −27.83 −28.63 −29.18 −29.51
n 33 33 32 27 21

Data are corrected for altitude (1.90e-4‰∕m) and absolute latitude (0.0124‰∕°).
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